THE COLLEGE FINALS

The Finals will be conducted in rounds. One at a time, each remaining contestant will have two and a half minutes to compute an indefinite integral. If answered correctly, the contestant remains in the competition. Once every remaining contestant has attempted one problem, a round is completed. If during any round, all contestants are unable to complete a problem correctly, all contestants will remain in the competition for another round.

The last person remaining wins an additional $\$ 75$ and will be crowned the Integration Champion!

INTEGRAL \#1

READY,

GET SET,...

2016 U of S INTEGRATIONBEE

INTEGRAL \#1

$$
\int \frac{x}{x^{4}+4 x^{2}+4} d x
$$

INTEGRAL \#1

$$
\begin{aligned}
& \int \frac{x}{x^{4}+4 x^{2}+4} d x \\
& \quad=\int \frac{x}{\left(x^{2}+2\right)^{2}} d x \\
& \quad=\frac{1}{2} \int \frac{1}{u^{2}} d u \quad u=x^{2}+2, d u=2 x d x \\
& =-\frac{1}{2 u}+C=-\frac{1}{2\left(x^{2}+2\right)}+C
\end{aligned}
$$

READY,

GET SET,...

INTEGRAL \#2

$\int \sin ^{3} x \cos ^{2} x d x$

INTEGRAL \#2

$\int \sin ^{3} x \cos ^{2} x d x$

$$
=\int\left(1-\cos ^{2} x\right) \cos ^{2} x \sin x d x
$$

$=-\int\left(1-u^{2}\right) u^{2} d u \quad u=\cos x, d u=-\sin x d x$
$=-\int\left(u^{2}-u^{4}\right) d u=-\frac{1}{3} \cos ^{3} x+\frac{1}{5} \cos ^{5} x+C$

2016 U of S INTEGRATION BEE

INTEGRAL \#3

READY,

GET SET,...

INTEGRAL \#3

$\int \frac{(x+2)^{3}}{x} d x$

2016 U of S INTEGRATION BEE

INTEGRAL \#3

$$
\begin{aligned}
& \int \frac{(x+2)^{3}}{x} d x \\
& \quad=\int \frac{x^{3}+6 x^{2}+12 x+8}{x} d x \\
& \quad=\int\left(x^{2}+6 x+12+\frac{8}{x}\right) d x
\end{aligned}
$$

$$
=\frac{x^{3}}{3}+3 x^{2}+12 x+8 \ln |x|+C
$$

INTEGRAL \#4

READY,

GET SET,...

2016 U of S INTEGRATIONBEE

INTEGRAL \#4

$$
\int \frac{e^{x}+e^{2 x}+e^{3 x}}{e^{4 x}} d x
$$

INTEGRAL \#4

$$
\begin{aligned}
& \int \frac{e^{x}+e^{2 x}+e^{3 x}}{e^{4 x}} d x \\
& \quad=\int\left(\frac{e^{x}}{e^{4 x}}+\frac{e^{2 x}}{e^{4 x}}+\frac{e^{3 x}}{e^{4 x}}\right) d x \\
& \quad=\int\left(e^{-3 x}+e^{-2 x}+e^{-x}\right) d x \\
& \quad=-\frac{1}{3} e^{-3 x}-\frac{1}{2} e^{-2 x}-e^{-x}+C
\end{aligned}
$$

INTEGRAL \#5

READY,

GET SET,...

INTEGRAL \#5
$\int \sqrt{x} \ln x d x$

INTEGRAL \#5

$$
\begin{aligned}
& \int \sqrt{x} \ln x \mathrm{~d} x \\
& =\frac{2 x^{3 / 2} \ln x}{3}-\frac{2}{3} \int x^{1 / 2} \mathrm{~d} x \quad \text { integrate by parts } \\
& =\frac{2 x^{3 / 2} \ln x}{3}-\frac{4 x^{3 / 2}}{9}+\mathrm{C}
\end{aligned}
$$

INTEGRAL \#6

READY,

GET SET,...

2016 U of S INTEGRATIONBEE

INTEGRAL \#6

$\int \frac{\sec ^{2} 2 x}{\sqrt[3]{2+\tan 2 x}} d x$

INTEGRAL \#6

$$
\begin{aligned}
& \int \frac{\sec ^{2} 2 x}{\sqrt[3]{2+\tan 2 x}} \mathrm{~d} x \\
& \quad=\frac{1}{2} \int \frac{1}{\sqrt[3]{\mathfrak{u}}} \mathrm{du} \quad u=2+\tan 2 x, d u=2 \sec ^{2} 2 x \mathrm{~d} x \\
& =\frac{3 u^{2 / 3}}{4}+C
\end{aligned}
$$

$$
=\frac{3(2+\tan 2 x)^{2 / 3}}{4}+C
$$

INTEGRAL \#7

READY,

GET SET,...

2016 U of S INTEGRATIONBEE

INTEGRAL \#7

$$
\int(x+17) \sqrt{x+29} d x
$$

INTEGRAL \#7

$\int(x+17) \sqrt{x+29} d x$

$$
=\int(u-12) \sqrt{u} d u \quad u=x+29, x=u-29, d x=d u
$$

$$
=\int\left(u^{3 / 2}-12 u^{1 / 2}\right) d u=\frac{2 u^{5 / 2}}{5}-8 u^{3 / 2}+C
$$

$$
=\frac{2}{5}(x+29)^{5 / 2}-8(x+29)^{3 / 2}=\frac{2}{5}(x+9)(x+29)^{3 / 2}+C
$$

INTEGRAL \#8

READY,

GET SET,...

INTEGRAL \#8

$$
\int \frac{1-x}{\sqrt{1-x^{2}}} d x
$$

INTEGRAL \#8

$$
\begin{aligned}
& \int \frac{1-x}{\sqrt{1-x^{2}}} d x \\
& \quad=\int\left(\frac{1}{\sqrt{1-x^{2}}}-\frac{x}{\sqrt{1-x^{2}}}\right) d x \\
& \quad=\arcsin x+\sqrt{1-x^{2}}+C
\end{aligned}
$$

INTEGRAL \#9

READY,

GET SET,...

INTEGRAL \#9

$\int \frac{\sin x}{(1-\sin x)(1+\sin x)} d x$

INTEGRAL \#9

$$
\begin{aligned}
& \int \frac{\sin x}{(1-\sin x)(1+\sin x)} d x \\
& \quad=\int \frac{\sin x}{1-\sin ^{2} x} d x=\int \frac{\sin x}{\cos ^{2} x} d x \\
& =-\int \frac{1}{u^{2}} \quad u=\cos x, d u=-\sin x d x \\
& =\frac{1}{u}+C=\frac{1}{\cos x}+C=\sec x+C
\end{aligned}
$$

INTEGRAL \#10

READY,

GET SET,...

2016 U of S INTEGRATIONBEE

INTEGRAL \#10

$$
\int \frac{1}{x^{2} \sqrt{1-x^{2}}} d x
$$

INTEGRAL \#10

$$
\begin{aligned}
& \int \frac{1}{x^{2} \sqrt{1-x^{2}}} d x \\
& \quad=\int \frac{\cos \theta}{\sin ^{2} \theta \cdot \cos \theta} d \theta \quad x=\sin \theta, d x=\cos \theta d \theta \\
& =\int \csc ^{2} \theta d \theta=-\cot \theta+C \\
& =-\frac{\sqrt{1-x^{2}}}{x}+C
\end{aligned}
$$

INTEGRAL \#11

READY,

GET SET,...

INTEGRAL \#11

$$
\int \frac{x-1}{x^{2}(x+1)} d x
$$

INTEGRAL \#11

$$
\begin{aligned}
& \int \frac{x-1}{x^{2}(x+1)} d x \\
& =\int\left(\frac{2}{x}-\frac{1}{x^{2}}-\frac{2}{x+1}\right) d x \quad \text { partial fractions } \\
& =2 \ln |x|+\frac{1}{x}-2 \ln |x+1|+C
\end{aligned}
$$

INTEGRAL \#12

READY,

GET SET,...

2016 U of S INTEGRATIONBEE

INTEGRAL \#12

$\int \frac{\sin x+\sec x}{\tan x} d x$

INTEGRAL \#12

$\int \frac{\sin x+\sec x}{\tan x} d x$
$=\int\left(\frac{\sin x}{\tan x}+\frac{\sec x}{\tan x}\right) d x$
$=\int(\cos x+\csc x) d x$
$=\sin x+\ln |\csc x-\cot x|+C$

INTEGRAL \#13

READY,

GET SET,...

2016 U of S INTEGRATIONBEE

INTEGRAL \#13

$\int \frac{\ln x}{x+x(\ln x)^{2}} d x$

INTEGRAL \#13

$$
\begin{aligned}
& \int \frac{\ln x}{x+x(\ln x)^{2}} d x \\
& =\int \frac{\ln x}{x\left(1+(\ln x)^{2}\right)} d x \\
& =\int \frac{u}{1+u^{2}} \quad u=\ln x, d u=\frac{1}{x} d x \\
& =\frac{1}{2} \ln \left(1+u^{2}\right)+C=\frac{1}{2} \ln \left(1+(\ln x)^{2}\right)+C
\end{aligned}
$$

