THE HIGH SCHOOL FINALS

The finals are conducted in rounds. One at a time, each remaining contestant will have two and a half minutes to compute an indefinite integral. If answered correctly, the contestant remains in the competition. Once every remaining contestant has attempted one problem, a round is completed. If during any round, all contestants are unable to complete a problem correctly, all contestants will remain in the competition for another round.

The last person remaining wins an additional $\$ 75$ and will be crowned the Integration Champion!

INTEGRAL \#1

READY,

GET SET,...

2016 U of S INTEGRATIONBEE

INTEGRAL \#1

$$
\int \frac{\cos (1 / x)}{x^{2}} d x
$$

INTEGRAL \#1

$$
\begin{aligned}
& \int \frac{\cos (1 / x)}{x^{2}} d x \\
& \quad=-\int \cos u d u \quad u=\frac{1}{x}, d u=-\frac{1}{x^{2}} d x \\
& =-\sin u+C \\
& =-\sin \frac{1}{x}+C
\end{aligned}
$$

READY,

GET SET,...

INTEGRAL \#2

$$
\int \sqrt{x}\left(x^{2}-6\right)^{2} d x
$$

INTEGRAL \#2

$$
\begin{aligned}
& \int \sqrt{x}\left(x^{2}-6\right)^{2} d x \\
& =\int \sqrt{x}\left(x^{4}-12 x^{2}+36\right) d x \\
& =\int\left(x^{9 / 2}-12 x^{5 / 2}+36 x^{1 / 2}\right) d x
\end{aligned}
$$

$$
=\frac{2 x^{11 / 2}}{11}-\frac{24 x^{7 / 2}}{7}+24 x^{3 / 2}+C
$$

INTEGRAL \#3

READY,

GET SET,...

INTEGRAL \#3

$$
\int \frac{x+3}{\left(x^{2}+6 x+7\right)^{3}}
$$

INTEGRAL \#3

$$
\begin{aligned}
& \int \frac{x+3}{\left(x^{2}+6 x+7\right)^{3}} \\
& =\frac{1}{2} \int u^{-3} d u \quad u=x^{2}+6 x+7, d u=(2 x+6) d x \\
& =-\frac{1}{4 u^{2}}+C \\
& =-\frac{1}{4\left(x^{2}+6 x+7\right)^{2}}+C
\end{aligned}
$$

INTEGRAL \#4

READY,

GET SET,...

2016 U of S INTEGRATIONBEE

INTEGRAL \#4

$\int \sin 5 x \sqrt{\cos ^{3} 5 x} d x$

$$
=-\frac{1}{5} \int u^{3 / 2} d u \quad u=\cos 5 x, d u=-5 \sin 5 x d x
$$

$$
=-\frac{1}{5} \cdot \frac{2 u^{5 / 2}}{5}+C
$$

$$
=-\frac{2}{25} \cos ^{5 / 2} 5 x+C
$$

INTEGRAL \#5

READY,

GET SET,...

INTEGRAL \#5

$$
\int \frac{1}{x \sqrt{x}}\left(2+\frac{1}{\sqrt{x}}\right)^{4} d x
$$

INTEGRAL \#5

$$
\begin{aligned}
& \int \frac{1}{x \sqrt{x}}\left(2+\frac{1}{\sqrt{x}}\right)^{4} d x \\
& =-2 \int u^{4} d u \quad u=2+\frac{1}{\sqrt{x}}, d u=-\frac{1}{2 x \sqrt{x}} d x \\
& =-\frac{2 u^{5}}{5}+C
\end{aligned}
$$

$$
=-\frac{2}{5}\left(2+\frac{1}{\sqrt{x}}\right)^{5}+C
$$

INTEGRAL \#6

READY,

GET SET,...

INTEGRAL \#6
$\int \frac{\sin 2 x}{\cos x} d x$

2:30

2016 U of S INTEGRATION BEE

INTEGRAL \#6
$\int \frac{\sin 2 x}{\cos x} \mathrm{~d} x$

$$
\begin{aligned}
& =\int \frac{2 \sin x \cos x}{\cos x} d x \\
& =2 \int \sin x d x
\end{aligned}
$$

$=-2 \cos x+C$

INTEGRAL \#7

READY,

GET SET,...

2016 U of S INTEGRATIONBEE

INTEGRAL \#7

$$
\int \frac{x}{(x+1)^{4}} d x
$$

INTEGRAL \#7

$$
\begin{aligned}
& \int \frac{x}{(x+1)^{4}} d x \\
& =\int \frac{u-1}{u^{4}} d u \quad u=x+1, x=u-1, d x=d u \\
& =\int\left(u^{-3}-u^{-4}\right) d u=-\frac{1}{2} u^{-2}+\frac{1}{3} u^{-3}+C \\
& =-\frac{1}{2(x+1)^{2}}+\frac{1}{3(x+1)^{3}}+C
\end{aligned}
$$

INTEGRAL \#8

READY,

GET SET,...

INTEGRAL \#8

$\int \cot ^{3} x \sec ^{2} x d x$

INTEGRAL \#8

$\int \cot ^{3} x \sec ^{2} x d x$

$$
\begin{aligned}
& =\int \frac{\cos x}{\sin ^{3} x} d x \\
& =\int u^{-3} d u \quad u=\sin x, d u=\cos x d x
\end{aligned}
$$

$$
=-\frac{1}{2 u^{2}}+C=-\frac{1}{2 \sin ^{2} x}+C=-\frac{1}{2} \csc ^{2} x+C
$$

INTEGRAL \#9

READY,

GET SET,...

INTEGRAL \#9

$$
\int\left(\frac{1}{x^{2}+x}+\frac{1}{x+1}\right) d x
$$

INTEGRAL \#9

$$
\begin{aligned}
& \int\left(\frac{1}{x^{2}+x}+\frac{1}{x+1}\right) d x \\
& =\int \frac{1}{x+1}\left(\frac{1}{x}+1\right) d x \\
& =\int \frac{1}{x} d x \\
& =\ln |x|+C
\end{aligned}
$$

INTEGRAL \#10

READY,

GET SET,...

2016 U of S INTEGRATIONBEE

INTEGRAL \#10

$$
\int \frac{\mathrm{e}^{x}+2 \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}}{4 \mathrm{e}^{4 x}} d x
$$

INTEGRAL \#10

$$
\begin{aligned}
& \int \frac{\mathrm{e}^{x}+2 \mathrm{e}^{2 x}+3 \mathrm{e}^{3 x}}{4 \mathrm{e}^{4 x}} \mathrm{~d} x \\
& \quad=\int\left(\frac{\mathrm{e}^{x}}{4 \mathrm{e}^{4 x}}+\frac{2 \mathrm{e}^{2 x}}{4 \mathrm{e}^{4 x}}+\frac{3 \mathrm{e}^{3 x}}{4 \mathrm{e}^{4 x}}\right) \mathrm{d} x \\
& \quad=\int\left(\frac{1}{4} \mathrm{e}^{-3 x}+\frac{1}{2} \mathrm{e}^{-2 x}+\frac{3}{4} \mathrm{e}^{-x}\right) \mathrm{d} x
\end{aligned}
$$

$$
=-\frac{1}{12} \mathrm{e}^{-3 x}-\frac{1}{4} \mathrm{e}^{-2 x}-\frac{3}{4} \mathrm{e}^{-x}+\mathrm{C}
$$

INTEGRAL \#11

READY,

GET SET,...

INTEGRAL \#11

$\int \tan ^{2} \frac{x}{5} \sec ^{2} \frac{x}{5} \mathrm{~d} x$

INTEGRAL \#11

$$
\begin{aligned}
& \int \tan ^{2} \frac{x}{5} \sec ^{2} \frac{x}{5} \mathrm{~d} x \\
& =5 \int u^{2} \mathrm{~d} u \quad u=\tan \frac{x}{5}, d u=\frac{1}{5} \sec ^{2} \frac{x}{5} d x \\
& =\frac{5 u^{3}}{3}+C \\
& =\frac{5}{3} \tan ^{3} \frac{x}{5}+C
\end{aligned}
$$

INTEGRAL \#12

READY,

GET SET,...

2016 U of S INTEGRATIONBEE

INTEGRAL \#12

$$
\int \frac{e^{2 x}}{e^{4 x}+4 e^{2 x}+4} d x
$$

INTEGRAL \#12

$$
\begin{aligned}
& \int \frac{\mathrm{e}^{2 x}}{\mathrm{e}^{4 x}+4 \mathrm{e}^{2 x}+4} \mathrm{~d} x \\
& \quad=\int \frac{\mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}+2\right)^{2}} \mathrm{~d} x \\
& \quad=\frac{1}{2} \int \frac{1}{u^{2}} \mathrm{~d} u \quad u=\mathrm{e}^{2 x}+2, \quad \mathrm{~d} u=2 \mathrm{e}^{2 x} \mathrm{~d} x \\
& \quad=-\frac{1}{2 u}+C=-\frac{1}{2\left(\mathrm{e}^{2 x}+2\right)}+C
\end{aligned}
$$

INTEGRAL \#13

READY,

GET SET,...

2016 U of S INTEGRATIONBEE

INTEGRAL \#13

$$
\int \frac{x \ln \left(x^{2}+1\right)}{x^{2}+1} d x
$$

INTEGRAL \#13

$$
\begin{aligned}
& \int \frac{x \ln \left(x^{2}+1\right)}{x^{2}+1} d x \\
& \quad=\frac{1}{2} \int u d u \quad u=\ln \left(x^{2}+1\right), d u=\frac{2 x}{x^{2}+1} d x \\
& =\frac{u^{2}}{4}+C \\
& =\frac{1}{4}\left(\ln \left(x^{2}+1\right)\right)^{2}+C
\end{aligned}
$$

INTEGRAL \#14

READY,

GET SET,...

INTEGRAL \#14

$\int \frac{x}{\cos ^{2}\left(x^{2}+3\right)} d x$

INTEGRAL \#14

$$
\begin{aligned}
& \int \frac{x}{\cos ^{2}\left(x^{2}+3\right)} d x \\
& =\int x \sec ^{2}\left(x^{2}+3\right) d x \\
& =\frac{1}{2} \int \sec ^{2} u d u \quad u=x^{2}+3, d u=2 x d x \\
& =\frac{1}{2} \tan u+C=\frac{1}{2} \tan \left(x^{2}+3\right)+C
\end{aligned}
$$

INTEGRAL \#15

READY,

GET SET,...

INTEGRAL \#15

$\int \frac{2 x-1}{\sqrt{x+3}} \mathrm{~d} x$

INTEGRAL \#15

$$
\begin{aligned}
& \int \frac{2 x-1}{\sqrt{x+3}} d x \\
& \quad=\int \frac{2(u-3)-1}{\sqrt{u}} d u \quad u=x+3, x=u-3, d x=d u \\
& =\int\left(2 u^{1 / 2}-7 u^{-1 / 2}\right) d u \\
& \quad=\frac{4}{3}(x+3)^{3 / 2}-14(x+3)^{1 / 2}+C
\end{aligned}
$$

INTEGRAL \#16

READY,

GET SET,...

INTEGRAL \#16

$$
\int \frac{\left(1+e^{x}\right)^{3}}{e^{x}} d x
$$

INTEGRAL \#16

$$
\begin{aligned}
& \int \frac{\left(1+e^{x}\right)^{3}}{e^{x}} d x \\
& \quad=\int \frac{1+3 e^{x}+3 e^{2 x}+e^{3 x}}{e^{x}} d x \\
& \quad=\int\left(e^{-x}+3+3 e^{x}+e^{2 x}\right) d x \\
& \quad=-e^{-x}+3 x+3 e^{x}+\frac{e^{2 x}}{2}+C
\end{aligned}
$$

INTEGRAL \#17

READY,

GET SET,...

INTEGRAL \#17

$$
\int \frac{x+2}{e^{3 x}} d x
$$

2016 U of S INTEGRATION BEE

INTEGRAL \#17

$$
\int \frac{x+2}{e^{3 x}} \mathrm{~d} x
$$

$$
=-\frac{(x+2) e^{-3 x}}{3}+\frac{1}{3} \int \mathrm{e}^{-3 x} \mathrm{~d} x
$$

$$
=-\frac{(x+2) \mathrm{e}^{-3 x}}{3}-\frac{\mathrm{e}^{-3 x}}{9}+\mathrm{C}
$$

$$
=-\frac{3 x+7}{9 e^{3 x}}+C
$$

