THE COLLEGE FINALS

Abstract

The Finals will be conducted in rounds. One at a time, each remaining contestant will have two and a half minutes to compute an indefinite integral. If answered correctly, the contestant remains in the competition. Once every remaining contestant has attempted one problem, a round is completed. If during any round, all contestants are unable to complete a problem correctly, all contestants will remain in the competition for another round.

The last person remaining wins an additional $\$ 75$ and will be crowned the Integration Champion!

READY,

GET SET,...

$$
\int\left(x^{3}+2\right)^{3} \mathrm{~d} x
$$

2:30

2017 U of S INTEGRATION BEE

$$
\begin{aligned}
& \int\left(x^{3}+2\right)^{3} d x \\
& =\int\left(x^{9}+6 x^{6}+12 x^{3}+8\right) d x \\
& \quad=\frac{x^{10}}{10}+\frac{6 x^{7}}{7}+3 x^{4}+8 x+C
\end{aligned}
$$

INTEGRAL \#2

READY,
 GET SET,...

$$
\int \frac{\sqrt[3]{x}+\sqrt[4]{x}}{\sqrt[5]{x}} d x
$$

2:30

2017 U of S INTEGRATION BEE

INTEGRAL \#2

$$
\begin{aligned}
& \int \frac{\sqrt[3]{x}+\sqrt[4]{x}}{\sqrt[5]{x}} d x \\
& \quad=\int \frac{x^{1 / 3}+x^{1 / 4}}{x^{1 / 5}} d x \\
& =\int\left(\frac{x^{1 / 3}}{x^{1 / 5}}+\frac{x^{1 / 4}}{x^{1 / 5}}\right) d x \\
& =\int\left(x^{2 / 15}+x^{1 / 20}\right) d x=\frac{15 x^{17 / 15}}{17}+\frac{20 x^{21 / 20}}{21}+C
\end{aligned}
$$

READY,
 GET SET,...

$$
\int(\sqrt{x}+1)(x-\sqrt{x}+1) d x
$$

$$
\begin{aligned}
& \int(\sqrt{x}+1)(x-\sqrt{x}+1) d x \\
& \quad=\int\left(x^{3 / 2}+1\right) d x \\
& =\frac{25^{5 / 2}}{5}+x+C
\end{aligned}
$$

READY,

GET SET,...

2017 U of S INTEGRATIONBEE

INTEGRAL \#4

$$
\int\left(\frac{x-5}{x}\right)^{2} d x
$$

2017 U of S INTEGRATION BEE

INTEGRAL \#4

$$
\begin{aligned}
& \int\left(\frac{x-5}{x}\right)^{2} \mathrm{~d} x \\
& =\int \frac{x^{2}-10 x+25}{x^{2}} \mathrm{~d} x \\
& \quad=\int\left(1-\frac{10}{x}+\frac{25}{x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

$$
=x-10 \ln |x|-\frac{25}{x}+C
$$

READY,
 GET SET,...

$$
\int x^{e} \cdot e^{\pi} \cdot x^{\pi} d x
$$

INTEGRAL \#5

$$
\begin{aligned}
& \int \chi^{\mathrm{e}} \cdot e^{\pi} \cdot \chi^{\pi} d x \\
& =e^{\pi} \int x^{\pi+e} d x \\
& =\frac{e^{\pi} x^{\pi+e+1}}{\pi+e+1}+C
\end{aligned}
$$

READY,
 GET SET,...

$\int \sec ^{7} x \tan x d x$

2:30

2017 U of S INTEGRATION BEE

$\int \sec ^{7} x \tan x d x$

$$
\begin{aligned}
& =\int \sec ^{6} x \cdot \sec x \tan x d x \\
& =\int u^{6} d u \quad u=\sec x, \quad d u=\sec x \tan x d x \\
& =\frac{u^{7}}{7}+C=\frac{\sec ^{7} x}{7}+C \text { or } \frac{1}{7 \cos ^{7} x}+C
\end{aligned}
$$

READY,
 GET SET,...

$$
\int \frac{x}{e^{3 x}} d x
$$

2:30

2017 U of S INTEGRATION BEE

$$
\begin{aligned}
& \int \frac{x}{\mathrm{e}^{3 x}} \mathrm{~d} x \\
& \quad=\int x \mathrm{e}^{-3 x} \mathrm{~d} x= \\
& -\frac{x \mathrm{e}^{-3 x}}{3}+\frac{1}{3} \int \mathrm{e}^{-3 x} \mathrm{~d} x \quad \text { integration by parts } \\
& =-\frac{x \mathrm{e}^{-3 x}}{3}-\frac{\mathrm{e}^{-3 x}}{9}+\mathrm{C}
\end{aligned}
$$

READY,
 GET SET,...

$$
\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x
$$

2:30

2017 U of S INTEGRATION BEE

$$
\begin{aligned}
& \int \frac{\sin \sqrt{x}}{\sqrt{x}} d x \\
& =2 \int \sin u d u \quad u=\sqrt{x}, \quad d u=\frac{1}{2 \sqrt{x}} d x \\
& =-2 \cos u+C \\
& =-2 \cos \sqrt{x}+C
\end{aligned}
$$

READY,
 GET SET,...

$$
\int \frac{1}{\cos ^{2} x(1+\tan x)^{2}} \mathrm{~d} x
$$

2017 U of S INTEGRATION BEE

INTEGRAL \#9

$\int \frac{1}{\cos ^{2} x(1+\tan x)^{2}} \mathrm{~d} x$

$$
\begin{aligned}
& =\int \frac{\sec ^{2} x}{(1+\tan x)^{2}} \mathrm{~d} x \\
& =\int \frac{1}{u^{2}} \mathrm{du} \quad u=1+\tan x, \quad d u=\sec ^{2} x d x
\end{aligned}
$$

$$
=-\frac{1}{u}+C=-\frac{1}{1+\tan x}+C
$$

READY,

GET SET,...

$$
\int(3+\sin 5 x)(3-\sin 5 x) d x
$$

$\int(3+\sin 5 x)(3-\sin 5 x) d x$

$$
=\int\left(9-\sin ^{2} 5 x\right) d x
$$

$$
=9 x-\int \frac{1-\cos 10 x}{2} d x
$$

$$
=9 x-\frac{x}{2}+\frac{\sin 10 x}{20}+C=\frac{17 x}{2}+\frac{\sin 10 x}{20}+C
$$

READY,
 GET SET,...

$$
\int \frac{1}{5-\sqrt{x}} \mathrm{~d} x
$$

2:30

2017 U of S INTEGRATION BEE

$$
\begin{aligned}
& \int \frac{1}{5-\sqrt{x}} \mathrm{~d} x \\
& \quad=-2 \int \frac{5-u}{u} d u \quad u=5-\sqrt{x}, \quad d u=-\frac{1}{2 \sqrt{x}} d x \\
& \quad=-2(5 \ln |u|-u)+C
\end{aligned}
$$

$$
=-2(5 \ln |5-\sqrt{x}|-5+\sqrt{x})+C
$$

READY,

GET SET,...

2017 U of S INTEGRATIONBEE

$\int(\sec x-\tan x)^{2} d x$

$\int(\sec x-\tan x)^{2} d x$

$$
\begin{aligned}
& =\int\left(\sec ^{2}-2 \sec x \tan x+\tan ^{2} x\right) d x \\
& =\int\left(\sec ^{2}-2 \sec x \tan x+\sec ^{2} x-1\right) d x \\
& =\int\left(2 \sec ^{2}-2 \sec x \tan x-1\right) d x \\
& =2 \tan x-2 \sec x-x+C
\end{aligned}
$$

READY,

GET SET,...

2017 U of S INTEGRATIONBEE

$$
\int \frac{2}{(x+1)(x+2)(x+3)} d x
$$

INTEGRAL \#13

$$
\begin{aligned}
& \int \frac{2}{(x+1)(x+2)(x+3)} d x \\
& \quad=\int\left(\frac{1}{x+1}-\frac{2}{x+2}+\frac{1}{x+3}\right) d x
\end{aligned}
$$

partial fractions

$$
=\ln |x+1|-2 \ln |x+2|+\ln |x+3|+C
$$

