HIGH SCHOOL FINAL ROUND

The finals are conducted in rounds. One at a time, each remaining contestant will have two and a half minutes to compute an indefinite integral. If answered correctly, the contestant remains in the competition. Once every remaining contestant has attempted one problem, a round is completed. If during any round, all contestants are unable to complete a problem correctly, all contestants will remain in the competition for another round.

HIGH SCHOOL FINAL ROUND

Contestants must circle their final answer. Contestants do not need to include the constant of integration $+C$ in their answer.

The last person remaining wins an additional \$75 and will be crowned the Integration Champion!

INTEGRAL \#1

READY,

GET SET,...

INTEGRAL \#1

$$
\int\left(x^{2}+x \sqrt{2}+1\right)\left(x^{2}-x \sqrt{2}+1\right) \mathrm{d} x
$$

INTEGRAL \#1

$$
\begin{aligned}
& \int\left(x^{2}+x \sqrt{2}+1\right)\left(x^{2}-x \sqrt{2}+1\right) \mathrm{d} x \\
& \quad=\int\left(x^{4}+1\right) \mathrm{d} x \\
& =\frac{x^{5}}{5}+x
\end{aligned}
$$

READY,

GET SET,...

INTEGRAL \# 2

$\sin x \cdot \sqrt[3]{4+\cos x} d x$

INTEGRAL \# 2

$\int \sin x \cdot \sqrt[3]{4+\cos x} \mathrm{~d} x$

$$
=-\int \sqrt[3]{u} \mathrm{~d} u \quad u=4+\cos x, \quad \mathrm{~d} u=-\sin x \mathrm{~d} x
$$

$$
=-\frac{3 u^{4 / 3}}{4}
$$

$$
=-\frac{3(4+\cos x)^{4 / 3}}{4}
$$

INTEGRAL \# 3

READY,

GET SET,...

INTEGRAL \# 3

$\int \frac{\sqrt[3]{x} \cdot \sqrt[4]{x}}{\sqrt[5]{x}} \mathrm{~d} x$

INTEGRAL \# 3

$$
\begin{aligned}
\int & \frac{\sqrt[3]{x} \cdot \sqrt[4]{x}}{\sqrt[5]{x}} \mathrm{~d} x \\
& =\int \frac{x^{1 / 3} \cdot x^{1 / 4}}{x^{1 / 5}} \mathrm{~d} x \\
& =\int \frac{x^{7 / 12}}{x^{1 / 5}} \mathrm{~d} x \\
& =\int x^{23 / 60} \mathrm{~d} x \\
& =\frac{60 x^{83 / 60}}{83}
\end{aligned}
$$

INTEGRAL \#4

READY,

GET SET,...

INTEGRAL \#4

$\int(1+\sqrt[3]{x})^{3} \mathrm{~d} x$

INTEGRAL \# 4

$$
\begin{aligned}
& \int(1+\sqrt[3]{x})^{3} \mathrm{~d} x \\
& =\int\left(1+x^{1 / 3}\right)^{3} \mathrm{~d} x \\
& =\int\left(1+3 x^{1 / 3}+3 x^{2 / 3}+x\right) \mathrm{d} x \\
& =x+\frac{9 x^{4 / 3}}{4}+\frac{9 x^{5 / 3}}{5}+\frac{x^{2}}{2}
\end{aligned}
$$

READY,

GET SET,...

INTEGRAL \# 5

$\int \frac{\sec ^{2}\left(\frac{1}{x}\right)}{x^{2}} \mathrm{~d} x$

INTEGRAL \# 5

$$
\begin{aligned}
& \int \frac{\sec ^{2}\left(\frac{1}{x}\right)}{x^{2}} \mathrm{~d} x \\
& \quad=-\int \sec ^{2} u \mathrm{~d} u \quad u=\frac{1}{x}, \quad \mathrm{~d} u=-\frac{1}{x^{2}} \mathrm{~d} x \\
& \quad=-\tan u \\
& \quad=-\tan \left(\frac{1}{x}\right)
\end{aligned}
$$

INTEGRAL \# 6

READY,

GET SET,...

INTEGRAL \# 6

$\int \frac{2 e^{3 x}+4 e^{5 x}+6 e^{7 x}}{e^{4 x}} d x$

INTEGRAL \# 6

$$
\begin{aligned}
& \int \frac{2 \mathrm{e}^{3 x}+4 \mathrm{e}^{5 x}+6 \mathrm{e}^{7 x}}{\mathrm{e}^{4 x}} \mathrm{~d} x \\
& =\int\left(\frac{2 \mathrm{e}^{3 x}}{\mathrm{e}^{4 x}}+\frac{4 \mathrm{e}^{5 x}}{\mathrm{e}^{4 x}}+\frac{6 \mathrm{e}^{7 x}}{\mathrm{e}^{4 x}}\right) \mathrm{d} x \\
& =\int\left(2 \mathrm{e}^{-x}+4 \mathrm{e}^{x}+6 \mathrm{e}^{3 x}\right) \mathrm{d} x \\
& =-2 \mathrm{e}^{-x}+4 \mathrm{e}^{x}+2 \mathrm{e}^{3 x}
\end{aligned}
$$

READY,

GET SET,...

INTEGRAL \# 7

$\int \frac{(x-6)^{2}}{x^{3}} \mathrm{~d} x$

INTEGRAL \# 7

$$
\begin{aligned}
\int & \frac{(x-6)^{2}}{x^{3}} \mathrm{~d} x \\
& =\int \frac{x^{2}-12 x+36}{x^{3}} \mathrm{~d} x \\
& =\int\left(\frac{x^{2}}{x^{3}}-\frac{12 x}{x^{3}}+\frac{36}{x^{3}}\right) \mathrm{d} x \\
& =\int\left(\frac{1}{x}-\frac{12}{x^{2}}+\frac{36}{x^{3}}\right) \mathrm{d} x \\
& =\ln |x|+\frac{12}{x}-\frac{18}{x^{2}}
\end{aligned}
$$

READY,

GET SET,...

2	0	1	8		U	of	S		I	N	T	E	G	R	A	T	I	O	N	

INTEGRAL \# 8

$\sec 3 x(\sec 3 x+\tan 3 x) d x$

INTEGRAL \# 8

$$
\begin{aligned}
& \int \sec 3 x(\sec 3 x+\tan 3 x) \mathrm{d} x \\
& \quad=\int\left(\sec ^{2} 3 x+\sec 3 x \tan 3 x\right) \mathrm{d} x \\
& \quad=\frac{1}{3} \tan 3 x+\frac{1}{3} \sec 3 x
\end{aligned}
$$

INTEGRAL \# 9

READY,

GET SET,...

INTEGRAL \# 9

$\int \frac{x}{\mathrm{e}^{x^{2}}} \mathrm{~d} x$

INTEGRAL \# 9

$$
\begin{aligned}
& \int \frac{x}{\mathrm{e}^{x^{2}}} \mathrm{~d} x \\
& \quad=\int x \mathrm{e}^{-x^{2}} \mathrm{~d} x \quad u=-x^{2}, \quad \mathrm{~d} u=-2 x \mathrm{~d} x \\
& =-\frac{1}{2} \int \mathrm{e}^{u} \mathrm{~d} u \\
& =-\frac{1}{2} \mathrm{e}^{u} \\
& =-\frac{1}{2} \mathrm{e}^{-x^{2}}=-\frac{1}{2 \mathrm{e}^{x^{2}}}
\end{aligned}
$$

INTEGRAL \#10

READY,

GET SET,...

INTEGRAL \#10

$\int \frac{\sin \ln x}{x} \mathrm{~d} x$

INTEGRAL \#10

$$
\begin{aligned}
& \int \frac{\sin \ln x}{x} \mathrm{~d} x \\
& \quad=\int \sin u \mathrm{~d} u \quad u=\ln x, \quad \mathrm{~d} u=\frac{1}{x} \mathrm{~d} x \\
& \quad=-\cos u \\
& \quad=-\cos \ln x
\end{aligned}
$$

INTEGRAL \#11

READY,

GET SET,...

INTEGRAL \#11

$\int \frac{x^{3}}{\sqrt[3]{x^{4}+7}} \mathrm{~d} x$

INTEGRAL \#11

$$
\begin{aligned}
& \int \frac{x^{3}}{\sqrt[3]{x^{4}+7}} \mathrm{~d} x \\
& \quad=\frac{1}{4} \int u^{-1 / 3} \mathrm{~d} u \quad u=x^{4}+7, \quad \mathrm{~d} u=4 x^{3} \mathrm{~d} x \\
& \quad=\frac{3 u^{2 / 3}}{8} \\
& \quad=\frac{3\left(x^{4}+7\right)^{2 / 3}}{8}
\end{aligned}
$$

READY,

GET SET,...

INTEGRAL \#12

$\int\left(\mathrm{e}^{2 x}+\tan 2 x\right)\left(\mathrm{e}^{2 x}+\sec ^{2} 2 x\right) \mathrm{d} x$

INTEGRAL \#12

$$
\begin{aligned}
& \int\left(\mathrm{e}^{2 x}+\tan 2 x\right)\left(\mathrm{e}^{2 x}+\sec ^{2} 2 x\right) \mathrm{d} x \\
& \quad=\frac{1}{2} \int u \mathrm{~d} u \quad u=\mathrm{e}^{2 x}+\tan 2 x, \quad \mathrm{~d} u=2\left(\mathrm{e}^{2 x}+\sec ^{2} 2 x\right) \mathrm{d} x \\
& \quad=\frac{u^{2}}{4} \\
& \quad=\frac{\left(\mathrm{e}^{2 x}+\tan 2 x\right)^{2}}{4}
\end{aligned}
$$

INTEGRAL \#13

READY,

GET SET,...

INTEGRAL \#13

$\left(\mathrm{e} x^{\mathrm{e}}+x \mathrm{e}^{x}\right) \mathrm{d} x$

INTEGRAL \#13

$$
\begin{aligned}
& \int\left(\mathrm{e} x^{\mathrm{e}}+x \mathrm{e}^{x}\right) \mathrm{d} x \\
& \quad=\frac{\mathrm{e} x^{\mathrm{e}+1}}{\mathrm{e}+1}+\int x \mathrm{e}^{x} \mathrm{~d} x \\
& \quad=\frac{\mathrm{e} x^{\mathrm{e}+1}}{\mathrm{e}+1}+\left(x \mathrm{e}^{x}-\int \mathrm{e}^{x} \mathrm{~d} x\right) \quad \text { Integration by parts } \\
& \quad=\frac{\mathrm{e} x^{\mathrm{e}+1}}{\mathrm{e}+1}+x \mathrm{e}^{x}-\mathrm{e}^{x}
\end{aligned}
$$

INTEGRAL \#14

READY,

GET SET,...

INTEGRAL \#14

$\int \frac{1}{\sqrt{x}(1+\sqrt{x})^{3}} \mathrm{~d} x$

INTEGRAL \#14

$$
\begin{aligned}
& \int \frac{1}{\sqrt{x}(1+\sqrt{x})^{3}} \mathrm{~d} x \\
& =2 \int \frac{1}{u^{3}} \mathrm{~d} u \quad u=1+\sqrt{x}, \quad \mathrm{~d} u=\frac{1}{2 \sqrt{x}} \mathrm{~d} x \\
& =-\frac{1}{u^{2}} \\
& =-\frac{1}{(1+\sqrt{x})^{2}}
\end{aligned}
$$

INTEGRAL \#15

READY,

GET SET,...

INTEGRAL \#15

$\mathrm{e}^{\sin x}+\sec ^{3} x$ $\mathrm{d} x$ $\sec x$

INTEGRAL \#15

$$
\begin{aligned}
& \int \frac{\mathrm{e}^{\sin x}+\sec ^{3} x}{\sec x} \mathrm{~d} x \\
& \quad=\int\left(\frac{\mathrm{e}^{\sin x}}{\sec x}+\frac{\sec ^{3} x}{\sec x}\right) \mathrm{d} x \\
& \quad=\int\left(\mathrm{e}^{\sin x} \cos x+\sec ^{2} x\right) \mathrm{d} x \\
& \quad=\mathrm{e}^{\sin x}+\tan x
\end{aligned}
$$

INTEGRAL \#16

READY,

GET SET,...

INTEGRAL \#16

$\int \frac{\ln x}{x^{2}} \mathrm{~d} x$

INTEGRAL \#16
$\int \frac{\ln x}{x^{2}} \mathrm{~d} x$

Integrate by parts:

$$
\begin{array}{rlrl}
u & =\ln x & \mathrm{~d} v & =\frac{1}{x^{2}} \mathrm{~d} x \\
\mathrm{~d} u & =\frac{1}{x} \mathrm{~d} x & v & =-\frac{1}{x}
\end{array}
$$

$=-\frac{\ln x}{x}+\int \frac{1}{x^{2}} \mathrm{~d} x$

$$
=-\frac{\ln x}{x}-\frac{1}{x}
$$

READY,

GET SET,...

INTEGRAL \#17

$\int \frac{x-\sin 2 x}{x^{2}+\cos 2 x} \mathrm{~d} x$

INTEGRAL \#17

$$
\begin{aligned}
& \int \frac{x-\sin 2 x}{x^{2}+\cos 2 x} \mathrm{~d} x \\
& \quad=\frac{1}{2} \int \frac{1}{u} \mathrm{~d} u \quad u=x^{2}+\cos 2 x, \quad \mathrm{~d} u=(2 x-2 \sin 2 x) \mathrm{d} x \\
& =2(x-\sin 2 x) \mathrm{d} x \\
& \quad=\frac{1}{2} \ln |u| \\
& \quad=\frac{1}{2} \ln \left(x^{2}+\cos 2 x\right)
\end{aligned}
$$

INTEGRAL \#18

READY,

GET SET,...

INTEGRAL \#18

$(x+1) \sec (x+1) \tan (x+1) \mathrm{d} x$

INTEGRAL \#18

$$
\int(x+1) \sec (x+1) \tan (x+1) d x
$$

Integrate by parts:

$$
u=x+1 \quad \mathrm{~d} v=\sec (x+1) \tan (x+1) \mathrm{d} x
$$

$$
\mathrm{d} u=\mathrm{d} x \quad v=\sec (x+1)
$$

$=(x+1) \sec (x+1)-\int \sec (x+1) \mathrm{d} x$
$=(x+1) \sec (x+1)-\ln |\sec (x+1)+\tan (x+1)|$

INTEGRAL \#19

READY,

GET SET,...

INTEGRAL \#19

$\int \frac{\tan ^{2} x}{\sec ^{2} x-\tan ^{2} x-\sin ^{2} x} \mathrm{~d} x$

INTEGRAL \#19

$$
\int \frac{\tan ^{2} x}{\sec ^{2} x-\tan ^{2} x-\sin ^{2} x} d x
$$

$$
=\int \frac{\tan ^{2} x}{1-\sin ^{2} x} \mathrm{~d} x \quad \sec ^{2} x-\tan ^{2} x=1
$$

$$
=\int \frac{\tan ^{2} x}{\cos ^{2} x} \mathrm{~d} x \quad 1-\sin ^{2} x=\cos ^{2} x
$$

$$
=\int \tan ^{2} x \sec ^{2} x \mathrm{~d} x=\int u^{2} \mathrm{~d} u \quad u=\tan x, \quad \mathrm{~d} u=\sec ^{2} x \mathrm{~d} x
$$

$$
=\frac{\tan ^{3} x}{3}
$$

INTEGRAL \# 20

READY,

GET SET,...

INTEGRAL \# 20

$\int \frac{x}{\sqrt{2 x-1}} \mathrm{~d} x$

INTEGRAL \# 20

$$
\begin{aligned}
& \int \frac{x}{\sqrt{2 x-1}} \mathrm{~d} x \\
& \quad u=\sqrt{2 x-1}, u^{2}=2 x-1, x=\frac{u^{2}+1}{2}, \mathrm{~d} x=u \mathrm{~d} u \\
& =\int \frac{u^{2}+1}{2} \cdot \frac{1}{u} \cdot u \mathrm{~d} u \\
& =\frac{1}{2} \int\left(u^{2}+1\right) \mathrm{d} u \\
& =\frac{1}{2}\left(\frac{u^{3}}{3}+u\right)=\frac{1}{2}\left(\frac{\sqrt{(2 x-1)^{3}}}{3}+\sqrt{2 x-1}\right)
\end{aligned}
$$

READY,

GET SET,...

INTEGRAL \#21

$\int \frac{x^{2}+2 x}{(x+1)^{5}} \mathrm{~d} x$

INTEGRAL \#21

$$
\begin{aligned}
& \int \frac{x^{2}+2 x}{(x+1)^{5}} \mathrm{~d} x \\
& =\int\left(\frac{x^{2}+2 x+1}{(x+1)^{5}}-\frac{1}{(x+1)^{5}}\right) \mathrm{d} x \\
& =\int\left(\frac{(x+1)^{2}}{(x+1)^{5}}-\frac{1}{(x+1)^{5}}\right) \mathrm{d} x \\
& =\int\left(\frac{1}{(x+1)^{3}}-\frac{1}{(x+1)^{5}}\right) \mathrm{d} x \\
& =-\frac{1}{2(x+1)^{2}}+\frac{1}{4(x+1)^{4}}
\end{aligned}
$$

READY,

GET SET,...

INTEGRAL \#22

$\int \frac{x^{\mathrm{e}-1}+\mathrm{e}^{x-1}}{x^{\mathrm{e}}+\mathrm{e}^{x}} \mathrm{~d} x$

INTEGRAL \#22

$$
\begin{aligned}
& \int \frac{x^{\mathrm{e}-1}+\mathrm{e}^{x-1}}{x^{\mathrm{e}}+\mathrm{e}^{x}} \mathrm{~d} x \\
& \quad=\frac{1}{\mathrm{e}} \int \frac{1}{u} \mathrm{~d} u \quad u=x^{\mathrm{e}}+\mathrm{e}^{x}, \quad \mathrm{~d} u=\left(\mathrm{e} x^{\mathrm{e}-1}+\mathrm{e}^{x}\right) \mathrm{d} x \\
& =\mathrm{e}\left(x^{\mathrm{e}-1}+\mathrm{e}^{x-1}\right) \mathrm{d} x \\
& \quad=\frac{1}{\mathrm{e}} \ln |u| \\
& \quad=\frac{\ln \left|x^{\mathrm{e}}+\mathrm{e}^{x}\right|}{\mathrm{e}}
\end{aligned}
$$

READY,

GET SET,...

INTEGRAL \# 23

$\ln (x+\pi) d x$

$\int \ln (x+\pi) \mathrm{d} x$

$$
u=\ln (x+\pi) \quad \mathrm{d} v=\mathrm{d} x
$$

Integrate by parts:

$$
\mathrm{d} u=\frac{1}{x+\pi} \mathrm{d} x \quad y=x+\pi
$$

$=(x+\pi) \ln (x+\pi)-\int 1 \mathrm{~d} x$
$=(x+\pi) \ln (x+\pi)-x$

