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Abstract. We discuss additivity and lineability of classes of functions generalizing the
concept of injectivity. In particular, we prove that it is consistent with ZFC that the class
of almost injective functions has maximal possible lineability, i.e., it contains (with the
exception of the zero function) a vector space of cardinality 2c.

1. Introduction

As usual, the symbols N and R will denote the sets of positive integers and real numbers,

respectively. The cardinality of a set X is denoted by the symbol |X|. In particular, |N| is

denoted by ω and |R| is denoted by c. We consider only real-valued functions. No distinction

is made between a function and its graph. We write f |A for the restriction of f to the set

A ⊆ R. The symbol χA denotes the characteristic function of the set A. For any subset Y

of a vector space V and any v ∈ V we de�ne v + Y = {v + y : y ∈ Y }.

We will recall now some de�nitions related to lineability (see [1,2,4,8]). Let V be a vector

space over R, F ⊆ V , and κ be a cardinal number. We say F is κ-lineable if F∪{0} contains

a subspace of V of dimension κ. The (coe�cient of) lineability of the subset F is denoted

by L(F) and de�ned as follows

L(F) = min{κ : F is not κ-lineable}.

The additivity A(F) of F ⊊ RX is de�ned as the smallest cardinality of a family G ⊆ RX

for which there is no g ∈ RX such that g + G ⊆ F (see [7]). It was investigated for many

classes of real functions.

The concept of a one-to-one (injective) function is a very fundamental one and is used in

most branches of mathematics. Many results dealing with various types of transformations

require the assumption of injectivity. One may wonder to which extent this assumption

Date: April 8, 2022.
2020 Mathematics Subject Classi�cation. Primary 15A03; Secondary 26A21, 03E75.
Key words and phrases. almost injective functions, lineability.

1



2 KRZYSZTOF P�OTKA

can be weakened in certain situations. In [5, 6], the author investigates certain topological

properties that are being preserved by continuous almost injective functions (functions for

which the set of points whose preimage has more than one point is countable). Motivated

by this idea, we will study additivity and lineability of classes of functions related to almost

injectivity. Speci�cally, we will consider the following families of real functions (X is a set

and κ is a cardinal number such that κ ≤ |X|).

SAI(X) = {f : X → R : ∃A⊆X |A| < ω and f |(X \A) is injective}

AI(X) = {f : X → R : ∃A⊆X |A| ≤ ω and f |(X \A) is injective}

WAI(X) = {f : X → R : ∃A⊆X |A| < c and f |(X \A) is injective}

F<κ(X) = {f : X → R : ∀y∈R |f−1(y)| < κ}

Fκ(X) = {f : X → R : ∀y∈R |f−1(y)| = 0 or κ}

F≤κ(X) = {f : X → R : ∀y∈R |f−1(y)| ≤ κ}

If X = R, we will use the symbols SAI,AI, WAI, F<κ, Fκ, and F≤κ, respectively. Note

that F1(X) is a family of injective functions on X. We will refer to functions in SAI(X),

AI(X), and WAI(X) as strongly almost injective, almost injective, and weakly almost in-

jective, respectively. Obviously Fω(X) ⊆ F≤ω(X) ⊆ F<c, AI(X) ⊆ F≤ω(X), and SAI(X) ⊆

AI(X) ⊆ WAI(X) ⊆ F<c.

The conditions used in the de�nitions of the above families can be thought of as general-

izations of the concept of injectivity. The problem of additivity and lineability of injective

functions is quite trivial as it can be easily established that A(F1(X)) = c and L(F1(X)) = 2

for any set X with at least two elements (see [10]). We will present some results on ad-

ditivity and lineability of functions representing generalized injectivity (the additivity and

lineability of Fn, F≤n (n ∈ ω), F<ω were studied in [10] and F<c in [4]).

2. Additivity

We start by investigating A(Fω).

Fact 2.1. A(Fω) ≤ c.

Proof. Let F = {f ∈ RR : f |(R \X) ≡ 0, X ⊆ R, |X| = ω}. Note that |F| = c and f ∈ F

for f ≡ 0. Now pick any g ∈ RR and assume that g /∈ Fω. Then g + F ̸⊆ Fω. Next,
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if g ∈ Fω, pick y0 ∈ g[R] and x0 ∈ g−1(y0). De�ne f = χ(g−1(y0)\{x0}) and observe that

(g + f)−1(y0) = {x0}. Therefore g + f ̸∈ Fω and consequently g + F ̸⊆ Fω as f ∈ F . □

Next we will work on �nding a lower bound for A(Fω) by utilizing the following two

lemmas. The �rst of these lemmas uses the assumption of regularity of c : cof(c)=c (for

more detail see [3]).

Lemma 2.2. (cof(c)=c) Let Y be a set of cardinality of c and {fi}n1 ⊆ RY , n = 1, 2, . . . .

Then there exists an X ⊆ Y such that |X| = c and for every i ≤ n, fi|X is injective or

constant.

Proof. This lemma easily follows from the observation that, under the assumption of

cof(c)=c, every function from RY is constant or injective on a set of cardinality c. □

Example 2.3. (CH) There exists an in�nite family {fn}n<ω ⊆ RR for which the conclusion

of Lemma 2.2 fails.

Proof. The Continuum Hypothesis implies the existence of an Ulam matrix on R (see [9]),

i.e., a family {Mn
ξ : n < ω, ξ < c} of subsets of R with

Mn
ξ ∩Mn

α = ∅, for n < ω, ξ < α < c,

the complement of
⋃
n<ω

Mn
ξ is a countable set, for ξ < c.

Fix an enumeration {xξ : ξ < c} of R. De�ne fn as an extension of
⋃

ξ<c xξχMn
ξ
onto R, for

every n < ω. We are now in a position to show that F = {fn : n < ω} is a counterexample

for the conclusion of Lemma 2.2. Let X ⊆ R be a set of cardinality c. Since the complement

of
⋃

n<ω Mn
ξ is a countable set, we have that |X ∩

⋃
n<ω Mn

ξ | = c (for ξ < c). Hence, for

every ξ < c there exists an n < ω such that |X ∩ Mn
ξ | = c. Consequently, there exists

an n0 < ω such that |X ∩ Mn0
ξ | = c for c-many ξ. Therefore, fn0 is neither injective nor

constant on X. □

Lemma 2.4. Let |X| = c and {fi}n1 ⊆ RX , n = 1, 2, . . . be such that f1 is constant and fi

is injective for i = 2, . . . , n. There exists a g ∈ RX such that g+ f1 is bijective and g+ fi is

injective for i = 2, . . . , n.
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Proof. The construction of g is through trans�nite induction. First note that we can

assume that f1 ≡ 0. Let X = {xξ : ξ < c} and R = {yξ : ξ < c} and assume that the

construction of g is carried out for all α < β < c in such a way that |dom(g)| ≤ max{ω, β},

{xξ : ξ < β} ⊆ dom(g), {yξ : ξ < β} ⊆ range(g), and g + f1, . . . , g + fn are injective. First,

if xβ /∈ dom(g), then choose g(xβ) /∈ {g(x) + fi(x)− fi(xβ) : x ∈ dom(g) and i = 1, . . . , n}.

Next, if yβ /∈ range(g), then choose

x′ /∈ dom(g) ∪
i=n⋃
i=2

f−1
i ({g(x) + fi(x)− yβ : x ∈ dom(g)})

and de�ne g(x′) = g(x′) + f1(x
′) = yβ . It is easy to see that the function g de�ned through

the above construction has the required properties. □

Before stating the next result, let us recall that a function f : R→ R is called everywhere

surjective (f ∈ ES) if f(I) = R for every non-trivial open interval I.

Theorem 2.5. Assume that cof(c)=c. Let Y be a set of cardinality c and {fi}n1 ⊆ RY ,

n ∈ {1, 2, . . . }. There exists a g ∈ RY such that g+ f1 is surjective and g+ fi ∈ F≤ω(Y ) for

i = 1, 2, . . . , n. In particular, A(Fω) ≥ ω and A(Fω ∩ ES) ≥ ω.

Proof. By Lemma 2.2, there exists an X ⊊ Y such that |X| = c and (fi − f1)|X is either

injective or constant for i = 1, 2, . . . , n. Next, by applying Lemma 2.4, we can conclude

that there is a g′ : X → R such that g′ + (f1 − f1) is bijective and g′ + (fi − f1) is injective

for i = 2, . . . , n. Now, since A(F1(Y \ X)) = c, there exists a g′′ : (Y \ X) → R such that

g′′ + (fi − f1) is injective for i = 1, . . . , n. De�ne g = (g′ − f1) ∪ (g′′ − f1) and notice that

g + f1 is surjective and g + fi ∈ F≤ω(Y ) for i = 1, 2, . . . , n.

To see A(Fω) ≥ ω, choose an arbitrary {fi}n1 ⊆ RR and decompose R =
⋃∞

k=1(Y
1
k ∪ · · · ∪

Y n
k ) into sets of cardinality c. Then apply the main conclusion of this theorem to each Y i

k

to obtain a gik : Y
i
k → R such that gik + fi is surjective and gik + fi ∈ F≤ω(Y

i
k ) for k ≤ ω and

i = 1, 2, . . . , n. It is easy to observe that by de�ning g =
⋃∞

k=1(g
1
k ∪ · · · ∪ gnk ) we obtain a

function g : R → R such that g + fi ∈ Fω for i = 1, 2, . . . , n. Observe that, by appropriate

choice of the sets Y i
k it can be assured that all the functions g+fi are everywhere surjective.

□

Theorem 2.6.
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(i) If 2ω1 = c (e.g., under MA and ¬CH), then A(AI) = A(F≤ω) = c = A(F1).

(ii) A(WAI) > A(SAI) = c.

(iii) If CH holds, then A(F≤ω) ≥ A(AI) = A(WAI) > c. Furthemore, under GCH we

have that A(F≤ω) = A(AI) = A(WAI) = c+ = 2c.

Proof. (i) First, notice that c = A(F1) ≤ A(AI) ≤ A(F≤ω) since F1 ⊆ AI ⊆ F≤ω. Next

we will justify that A(F≤ω) ≤ c. Fix X ⊆ R such that |X| = ω1 and de�ne F = {f ∈

RR : f |(R \X) ≡ 0}. It is easy to see that for any g ∈ RR, g +F ̸⊆ F≤ω. Since we assumed

2ω1 = c we also have that |F| = c.

(ii) Choose an arbitrary family of real functions G = {gβ : β < c}. Using the trans�nite

induction, it is not di�cult to construct a function g ∈ RR such that g+ G ⊆ WAI. Indeed,

let R = {xξ : ξ < c}, de�ne g(x0) arbitrarily, and assume that g is de�ned on {xξ : ξ < α}

for some α < c. We choose g(xα) ̸∈
⋃

β≤α−gβ(xα) + {g(xξ) + gβ(xξ) : ξ < α}. The above

choice assures that (g + gα)|{xξ : ξ ≥ α} is injective.

To see A(SAI) = c note that F1 ⊆ SAI ⊆ F<ω and recall that A(F1) = A(F<ω) = c

(see [10]).

(iii) This part easily follows from part (ii) and the observation that, under CH, we obvi-

ously have AI = WAI. □

Observe that the above results imply that it cannot be proved in ZFC that A(F1) is

equal to A(AI) and neither it can be proved that the two additivities are di�erent. Note

also that it cannot be proved in ZFC that A(Fω) is equal to A(F≤ω). However, it remains

an open problem whether it is consistent with ZFC that A(Fω) = A(F≤ω). Additionally,

Theorem 2.6 implies that A(AI) = A(WAI) is independent of ZFC.

3. Lineability

In this section we turn our attention to lineability. Before stating the �rst result of this

section, let us recall some additional de�nitions. A function f : R → R is called strongly

everywhere surjective (f ∈ SES) if |f−1(y) ∩ I| = c for every y ∈ R and non-trivial open

interval I. A function g : R → R is called additive (g ∈ AD) if it is linear over the �eld of

rational numbers.
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Remark 3.1. L(Fω) = L(F≤ω) ≥ L(F<ω) = c+. Additionally, if CH holds, then AD∩ES \

SES ⊆ Fω and, as a consequence, L(Fω) = L(F≤ω) > c+.

Proof. Obviously L(Fω) ≤ L(F≤ω). Now, let κ < L(F≤ω), {Xξ : ξ < c} be a decomposition

of R into denumerable sets, and X = {xξ : ξ < c} be such that xξ ∈ Xξ for ξ < c. There

exists a vector space V of cardinality κ such that V ⊆ F≤ω(X) ∪ {0}. De�ne W = {f ∈

RR : ∃g∈V ∀ξ<c f |Xξ ≡ g(xξ)}. It is easy to check that W ⊆ Fω ∪ {0}.

The inequality L(F≤ω) ≥ L(F<ω) is obvious and the equality L(F<ω) = c+ was proved

in [10] (Theorem 2.3) .

To see that, under the assumption of CH we have AD ∩ ES \ SES ⊆ Fω, note that

for any additive function f , |f (−1)(y)| = | ker(f)| for all y ∈ range(f). Therefore, if f ∈

AD ∩ ES \ SES, then |f (−1)(y)| = | ker(f)| = ω for all y ∈ R, which implies that f ∈ Fω.

Finally, it was proved in [11] that CH implies L(AD ∩ ES \ SES) > c+. □

Theorem 3.2. L(WAI) ≥ L(AD ∩ ES \ SES).

Proof. Fix a Hamel basis H ⊆ R. Observe that if f ∈ AD∩ES\SES, then f |H ∈ WAI(H).

Indeed, if f |H ̸∈ WAI(H), then {x ∈ H : |(f |H)−1(f(x))| > 1}| = c. This implies that

| ker(f)| = c and consequently f−1(y) is a c-dense set for every y ∈ R. This would contradict

the fact that f ̸∈ SES.

Now, let κ < L(AD ∩ ES \ SES) and W ⊆ AD ∩ (ES \ SES) ∪ {0} be a vector space of

cardinality κ. Next, �x a bijection b : R→ H and de�ne

V = {(h|H) ◦ b : h ∈ W}.

It is easy to check that |V | = |W | = κ and V ⊆ WAI ∪ {0}. Consequently,

L(WAI) ≥ L(AD ∩ ES \ SES).

□

Using the above theorem and [11, Theorem 2] we obtain the following corollary.

Corollary 3.3. If c is regular, then L(WAI) > c+. Hence, it is consistent with ZFC (e.g.,

under the assumption of GCH) that L(WAI) = L(AI) = (2c)+.
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Before investigating L(SAI), we introduce some notation and prove auxiliary results. Let

X = {xα : α < κ} for some cardinal κ and F be a family of real valued functions on X.

For x, y ∈ X and f1, . . . , fn ∈ F we de�ne vx,yf1,...,fn
= (f1(y), . . . , fn(y))− (f1(x), . . . , fn(x)).

Additionally, for Y ⊆ X we set

EY
f1...,fn = {vxα1 ,xα2

f1,...,fn
: α1 < α2, xα1 , xα2 ∈ Y }.

Furthermore, we will say that F satis�es condition (I) on Y if

(I) for any distinct f1, . . . , fn ∈ F and any distinct (xα1
1
, xα1

2
), . . . , (xαn

1
, xαn

2
) ∈ Y 2

(where αi
1 < αi

2, i ≤ n ≥ 1) we have dim(span({v
x
αi
1
,x

αi
2

f1,...,fn
: i ≤ n})) = n.

Lemma 3.4. Let F be a family of functions on X. F satis�es the condition (I) on X if and

only if for any a1, . . . , an ∈ R (not all equal to 0) and any distinct f1, . . . , fn ∈ F (n ≥ 1)

there exists a set A ⊆ X such that |A| ≤ n− 1 and (a1fξ1 + · · ·+ anfξn)|(R \A) is injective.

Proof. Assume that for some n ≥ 1, some a1, . . . , an ∈ R (not all equal to 0), and some

distinct f1, . . . , fn ∈ F there is no set A ⊆ X such that |A| ≤ n − 1 and (a1fξ1 + · · · +

anfξn)|(R \ A) is injective. This is equivalent to the existence of n distinct pairs (xαi
1
, xαi

2
)

(αi
1 < αi

2 for i = 1, . . . , n) for which

a1f1(xαi
2
) + · · ·+ anfn(xαi

2
) = a1f1(xαi

1
) + · · ·+ anfn(xαi

1
) (i ≤ n).

Consequently, dim(span({v
x
αi
1
,x

αi
2

f1,...,fn
: i ≤ n}) < n as

span({v
x
αi
1
,x

αi
2

f1,...,fn
: i ≤ n}) ⊆ {(t1, . . . , tn) ∈ Rn : a1t1 + · · ·+ antn = 0}.

Equivalently, we obtain the negation of the condition (I). □

Theorem 3.5. There exists a family of real functions F of cardinality c that satis�es the

condition (I) on R.

Before proving the above theorem we state and justify the following corollary.

Corollary 3.6. L(WAI) ≥ L(AI) ≥ L(SAI) = c+.

Proof. The inequalities are obvious. To see L(SAI) ≥ c+ note that for the family F from

Theorem 3.5 we have, by Lemma 3.4, that span(F) ⊆ SAI ∪ {0} and dim(span(F)) = c.

The inequality L(SAI) ≤ c+ is a consequence of SAI ⊆ F<ω and L(F<ω) = c+ (see [10]). □
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Proof of Theorem 3.5. Let F ⊆ RR (|F| < c) be a family of functions satisfying the

condition (I) on R. We will de�ne a real function g /∈ F such that F ∪ {g} also satis�es the

condition (I) on R.

Fix R = {xα : α < c} and choose g(x0) /∈ {f(x0) : f ∈ F}. Now let β < c and assume

that g is de�ned on X = {xα : α < β} in such a way that {f |X : f ∈ F} ∪ {g} satis�es the

condition (I) on X.

Next we will de�ne g(xβ). For n ≥ 1, distinct f1 . . . , fn ∈ F , x ∈ X = {xα : α < β}, and

{v1, . . . , vn} ⊆ EX
f1,...,fn,g

, let txv1,...,vn denote a real number such that the only element of

{(f1(xβ), . . . , fn(xβ), t) ∈ Rn+1 : t ∈ R} ∩ ((f1(x), . . . , fn(x), g(x)) + span{v1, . . . , vn})

is (f1(xβ), . . . , fn(xβ), t
x
v1,...,vn). Now choose

g(xβ) ∈ R \
⋃
n≥1

⋃
f1,...,fn∈F
distinct

⋃
{v1,...,vn}⊆EX

f1,...,fn,g

⋃
α<β

{g(xα), txα
v1,...,vn}.

To see that {f |X ∪ {xβ} : f ∈ F} ∪ {g} satis�es the condition (I) on X ∪ {xβ} assume

that for some n ≥ 1, distinct f1, . . . , fn ∈ F , and distinct (xα1
1
, xα1

2
), . . . , (xαn+1

1
, xαn+1

2
)

(where αi
1 < αi

2 ≤ β, i ≤ n + 1) we have dim(span({v
x
αi
1
,x

αi
2

f1,...,fn,g
: i ≤ n + 1})) < n + 1.

Note that β = max{αi
k : k = 1, 2 and i = 1, . . . , n + 1} as by the inductive assumption

{f |X : f ∈ F}∪ {g|X} satis�es the condition (I) on X. We can assume that β is an element

of exactly one of the pairs (α1
1, α

1
2), . . . , (α

n+1
1 , αn+1

2 ). Indeed, if β = αi
2 = αj

2 for some

i, j ≤ n+ 1 with αi
1 < αj

1, then the pair (αi
1, α

i
2) = (αi

1, β) could be replaced by (αi
1, α

j
1) as

span({v
x
αi
1
,xβ

f1,...,fn,g
, v

x
α
j
1
,xβ

f1,...,fn,g
}) = span({v

x
αi
1
,x

α
j
1

f1,...,fn,g
, v

x
α
j
1
,xβ

f1,...,fn,g
}).

For convenience we can assume that αn+1
2 = β. Now, based on the inductive assumption,

we conclude that dim(span({v
x
αi
1
,x

αi
2

f1,...,fn,g
: i ≤ n})) = n and, as a consequence, v

x
α
j
1
,xβ

f1,...,fn,g
∈

span({v
x
αi
1
,x

αi
2

f1,...,fn,g
: i ≤ n}). This implies that

(f1(xβ), . . . , fn(xβ), g(xβ)) ∈ (f1(x
1
αn+1

), . . . , fn(x
1
αn+1

), g(x1αn+1
))+span({v

x
αi
1
,x

αi
2

f1,...,fn,g
: i ≤ n})

which contradicts the way g(xβ) was chosen.

This completes the inductive step and the de�nition of g. It is easy to see that g /∈ F and

F ∪ {g} satis�es the condition (I) on R. □

We �nish by stating some open problems.
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Problem 3.7. Is it consistent with ZFC that A(Fω) = A(F≤ω)?

Problem 3.8. Can it be proved in ZFC that L(WAI) = (2c)+?
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