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ABSTRACT

Set-theoretic and Algebraic Properties of Certain Families of Real

Functions

Krzysztof PÃlotka

Given two families of real functions F1 and F2 we consider the following question:

can every real function f be represented as f = f1 +f2, where f1 and f2 belong to F1

and F2, respectively? This question leads to the definition of the cardinal function

Add: Add(F1,F2) is the smallest cardinality of a family F of functions for which

there is no function g in F1 such that g + F is contained in F2. This work is

devoted entirely to the study of the function Add for different pairs of families of

real functions. We focus on the classes that are related to the additive properties

and generalized continuity.

Chapter 2 deals with the classes related to the generalized continuity. In particu-

lar, we show that Martin’s Axiom (MA) implies Add(D,SZ) is infinite and Add(SZ,D)

equals to the cardinality of the set of all real numbers. SZ and D denote the families

of Sierpiński-Zygmund and Darboux functions, respectively. As a corollary we ob-

tain that the proposition: every function from R into R can be represented as a sum

of Sierpiński-Zygmund and Darboux functions is independent of ZFC axioms.

Chapter 3 is devoted entirely to the classes related to the concept of additivity.

We introduce the definition of Hamel functions. We say that a real function is

a Hamel function if its graph is a Hamel basis for the plane. Main result of this

chapter is the theorem that every real function can be represented as the pointwise

sum of two Hamel functions.

In Chapter 4 we investigate the function Add for pairs of classes such that one

relates to the generalized continuity and the other to the additive properties.
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Chapter 1

Preliminaries

1.1 Introduction

The classes of functions related to generalized continuity have been heavily studied in

recent years. A class which generalizes some notion of continuity is called Darbuox-

like. An example of a Darbuox-like family is a class of Darboux functions. In 1875 G.

Darboux [8], investigating the properties of derivatives, proved that every derivative

of a real function defined on R has the intermediate value property . Recall that a

function f :R → R satisfies the intermediate value property if for all real numbers

a and b (a < b) and for every y between f(a) and f(b) there is a real number

c ∈ (a, b) such that f(c) = y. Today the class of Darboux functions is defined

to be exactly the class of all functions satisfying the intermediate value property.

The following example shows that continuous functions form a proper subfamily of

Darboux functions. Define f :R→ R by

f(x) =

{
sin ( 1

x
) if x 6= 0

0 otherwise.

There are many other families of Darbuox-like functions that we will define in

the next section.
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CHAPTER 1. PRELIMINARIES 2

Another example of a class which is related to the concept of continuity is the class

of Sierpiński-Zygmund functions . However, it is not an example of a Darbuox-like

family. A function h:R→ R is called Sierpiński-Zygmund if every restriction of h to

a set of cardinality continuum is discontinuous. Hence we could say that Sierpiński-

Zygmund functions are “anti-continuous.” The existence of such a function was

proved by W. Sierpiński and A. Zygmund [23]. It turns out that it is possible (under

special set-theoretical assumptions) that such a pathological function can also be

Darboux. On the other hand, there exists a model of set theory ZFC in which no

Sierpiński-Zygmund function is Darboux. The relationship between Darboux-like

families and the class of Sierpiński-Zygmund functions will be the main topic of

Chapter 2.

Another notion which is also very useful in Real Analysis is additivity . This

concept dates back to the early 19th century when the following functional equation

was considered for the first time

f(x + y) = f(x) + f(y) for all x, y ∈ R.

An obvious solution to this equation is a linear function, that is, a function defined

by f(x) = ax for all x ∈ R, where a is some constant. The first mathematician, who

proved that the linear functions are the only continuous solutions, was A. L. Cauchy

[2]. Because of this, the above equation is known as Cauchy’s Functional Equation.

For a long time the existence of a discontinuous solutions of the Cauchy equation

was an open problem. This problem was solved by G. Hamel in 1905 [10] who

constructed a discontinuous function which satisfies the desired equation. The key

in his construction is a linear basis of R considered as a linear space over the rational
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numbers Q. Such bases are called today Hamel bases . They play very important

role in many constructions in Real Analysis and other areas of mathematics.

The family of all solutions of the above functional equation is called the family

of additive functions . Similarly as in the case of generalized continuity, we also

consider a class of functions that could be treated as “anti-additive.” We say that

a real function defined on R is a Hamel function if its graph is a Hamel basis for

the plane. It is obvious that such functions cannot be additive. The class of Hamel

functions and its relation to the additive functions is discussed in details in Chapter 3.

It is also of interest to compare the two concepts mentioned above: generalized

continuity and additivity. The investigation of the relationship between Darboux-like

classes and the additive functions is presented in Chapter 4.

1.2 Notation, definitions, and basic facts

The terminology and notation is standard and follows [3]. The symbols R and Q

stand for the sets of all real and all rational numbers, respectively. A basis of Rn

as a linear space over Q is called a Hamel basis . For Y ⊂ Rn, the symbol LinQ(Y )

stands for the smallest linear subspace of Rn over Q that contains Y .

The cardinality of a set X we denote by |X|. In particular, |R| is denoted by

c. For the cardinal number κ we write [X]κ to denote the family of all subsets Y

of X with |Y | = κ. In particular, [X]1 stands for the family of all singletons in

X. Similarly we define [X]<κ. If γ is also a cardinal number then κ<γ denotes the

cardinality of the set [κ]<γ. The symbol cf(κ) stands for the cofinality of κ. We say

that κ is regular provided that cf(κ) = κ. MA and CH are used to denote Martin’s

Axiom and Continuum Hypothesis, respectively.
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B and M stand for the families of all Borel and all meager subsets of R, respec-

tively. We say that a set B ⊆ R is a Bernstein set if both B and R\B intersect every

perfect set. For a cardinal number κ, a set A ⊆ R is called κ-dense if |A∩ I| ≥ κ for

every non-trivial interval I. For any set P ⊆ X × Y , we denote its x-projection by

dom(P ). That is dom(P ) = {x ∈ X: 〈x, y〉 ∈ P}.
We consider only real-valued functions defined on subsets of Rn. No distinction

is made between a function and its graph. For any two partial real functions f and g

we write f +g, f−g for the sum and difference functions defined on dom(f)∩dom(g).

The class of all functions from a set X into a set Y is denoted by Y X . We write f |A
for the restriction of f ∈ Y X to the set A ⊆ X. The image and preimage of a set B

under the function f are denoted by f [B] and f−1[B], respectively. For C ⊆ Rn, its

characteristic function is denoted by χ
C . If f, g ∈ Y X , then [f 6= g] denotes the set

{x ∈ X : f(x) = g(x)}. In a similar way we define. For any function g ∈ RX and

any family of functions F ⊆ RX we define g + F = {g + f : f ∈ F}.
The cardinal function A(F), for F ⊆ RX , is defined as the smallest cardinality

of a family F ⊆ RX for which there is no g ∈ RX such that g + F ⊆ F . That is

A(F) = min {|F |: F ⊆ RX & ¬∃g ∈ RX g + F ⊆ F} ∪ {(|RX |)+}.

For example, if Const is the family of all constant functions from R to R then

A(Const) = 2. To see that A(Const) ≥ 2 choose any function f ∈ RR. Notice

that f + (−f) ∈ Const, so A(Const) ≥ 2. To prove the opposite inequality let us

define f1 and f2 to be characteristic functions of {1} and {2}, respectively. Now, if

g + f1 ∈ Const for some g ∈ RR then g + f2 = (g + f1) + (f2 − f1) /∈ Const.

The function A was investigated for many different classes of real functions, see
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e.g. [6], [7], [18]. In this work we generalize the function A by imposing some

restrictions on the function g. Thus for F1,F2 ⊆ RX we define

Add(F1,F2) = min {|F |: F ⊆ RX & ¬∃g ∈ F1 g + F ⊆ F2} ∪ {(|RX |)+}.

Observe that A(F) = Add(RX ,F) for any set X, so the function Add is indeed

a generalization of the function A. Notice also the following properties of the Add

function.

Proposition 1.2.1 Let F1 ⊆ F2 ⊆ RX and F ⊆ RX .

(1) Add(F1,F) ≤ Add(F2,F).

(2) Add(F ,F1) ≤ Add(F ,F2).

(3) Add(F1,F2) ≥ 2 if and only if RX = F2 −F1.

(4) If Add(F1,F2) ≥ 2 then F1 ∩ F2 6= ∅.

(5) A(F) = Add(F ,F) + 1. In particular, if A(F) ≥ ω then Add(F ,F) = A(F).1

Proof. (1) Let G ⊆ RX be such that |G| < Add(F1,F). From the definition of

Add we get that there exists a g ∈ F1 with the property that g + G ∈ F . Since

g ∈ F1 ⊆ F2 we obtain that Add(F1,F) ≤ Add(F2,F).

(2) The proof of (2) is very similar to the proof of (1).

(3) Assume that Add(F1,F2) ≥ 2. Based on the definition of Add, this is equiv-

alent to

∀f ∈ RX ∃f1 ∈ F1 ∃f2 ∈ F2 such that f1 + f = f2.

1Very similar observation, in a little bit different context, was obtained independently by Francis
Jordan [12, Proposition 1.3].
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From this we obtain that f = f1−f2. Thus, f ∈ F2−F1 for all f ∈ RX . Consequently,

RX = F2 −F1.

Notice that the above argument can be reserved. Thus, we proved the equivalency.

(4) Part (3) implies that if Add(F1,F2) ≥ 2 then 0 ∈ F2 − F1, where 0: X → R

is a function identically equal to zero. Hence there are f1 ∈ F1 and f2 ∈ F2 such

that 0 = f1 − f2. So f1 = f2 and consequently F1 ∩ F2 6= ∅.
(5) By (1) Add(F ,F) ≤ Add(RX ,F) = A(F). On the other hand, observe that

A(F) ≤ Add(F ,F)+1. To see the above let F ⊆ RR be such that |F | = Add(F ,F)

and

¬∃ g ∈ F g + F ⊆ F .

Then we have

¬∃ g ∈ RR g + (F ∪ {0}) ⊆ F .

So the conclusion is obvious in the case A(F) ≥ ω. Therefore we will concentrate

on the case A(F) = k for some k ∈ ω. Recall that the function A is bounded

from the bottom by 1, thus k ≥ 1. From the previous argument we conclude that

Add(F ,F) ≥ k − 1. So we only need to justify that Add(F ,F) ≤ k − 1.

Let {f1, . . . , fk} be a family witnessing A(F) = k. Then the set {fi − fk}k−1
i=1

witnesses Add(F ,F) ≤ k − 1. Indeed, assume by contradiction, that we can find a

function f ∈ F such that (fi − fk) + f ∈ F for every i = 1, . . . , k − 1. Then the

function f − fk shifts the set {f1, . . . , fk} into F , a contradiction.

The following is a list of the definitions of the different types of functions that we

mentioned in the previous section. These classes are main focus of this work.

For X ⊆ Rn a function f : X → R is:
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• additive if f(x + y) = f(x) + f(y) for all x, y ∈ X such that x + y ∈ X;

• almost continuous (in sense of Stallings) if each open subset of X×R containing

the graph of f contains also the graph of a continuous function from X to R;

• connectivity if the graph of f |Z is connected in Z×R for any connected subset

Z of X;

• Darboux if f [K] is a connected subset of R (i.e., an interval) for every connected

subset K of X;

• an extendability function provided there exists a connectivity function F from

X × [0, 1] into R such that f(x) = F (x, 0) for every x ∈ X;

• a Hamel function provided that the graph of f is a Hamel basis for Rn+1;

• peripherally continuous if for every x ∈ X and for all pairs of open sets U and

V containing x and f(x), respectively, there exists an open subset W of U such

that x ∈ W and f [bd(W )] ⊂ V ;

• Sierpiński-Zygmund if for every set Y ⊆ X of cardinality continuum c, f |Y is

discontinuous.

The classes of functions defined above are denoted by AD(X), AC(X), Conn(X),

D(X), Ext(X), HF(X), PC(X), and SZ(X), respectively. The family of all continu-

ous functions from X into R is denoted by C(X). We drop the index X in the case

X = R. To simplify notation, we introduce the symbol SZpart to denote
⋃

X⊆R SZ(X).

Recall that a function f :Rn → R is almost continuous if and only if it intersects

every blocking set , i.e., a closed set K ⊆ Rn+1 which meets every continuous function
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from C(Rn) and is disjoint with at least one function from RRn
. The domain of

every blocking set contains a non-degenerate connected set. (See [14].) It is also

well-known that each continuous partial function can be extended to a continuous

function defined on some Gδ set. (See [17].) Thus if |[f = g]| < c for each continuous

partial function g defined on some Gδ-set then f is Sierpiński-Zygmund. Recall also

that each additive function f ∈ AD is linear over Q, i.e., for all p, q ∈ Q and x, y ∈ R
we have f(px + qy) = pf(x) + qf(y).

The above classes are related in the following way (arrows −→ indicate proper

inclusions.) (See [4] or [9].)

C Ext AC Conn D PC- - - - -

Chart 1. Containments for RR.

C(Rn) - Ext(Rn) = Conn(Rn) = PC(Rn) - AC(Rn) ∩D(Rn) ©©©*AC(Rn)

D(Rn)
HHHj

Chart 2. Containments for RRn
when n ≥ 2.

The class of Sierpiński-Zygmund functions is independent of all the classes in-

cluded in the above chart in the following sense. There is no inclusion between SZ

and AC, Conn, D, or PC. SZ is disjoint with C and Ext. (See also comment be-

low Corollary 2.1.4.) SZ(Rn) is disjoint with D(Rn) and AC(Rn) for n ≥ 2. (See

Remarks 2.1.6 and 2.1.7.)
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The class of additive functions AD(Rn) intersects each of the other classes (the

existence of a function in AD ∩ SZ follows from Theorem 4.3.1 (iv) and Propo-

sition 1.2.1 (4).) However, it is not contained in any of them except the family

PC(Rn) in the case n = 1. Then we have AD ⊆ PC.

For the relationship between Hamel functions and the other families see Sec-

tion 4.3.

Now let us comment on A(F) for F ∈ {Ext, AC, Conn, D, PC, SZ}. The following

can be proved in ZFC:

c+ = A(Ext) ≤ A(AC) = A(Conn) = A(D) ≤ A(PC) = 2c,

c+ ≤ A(SZ) ≤ 2c.

For more details see [5], [6], [7], and [18]. The number A(HF) will be investigated in

Chapter 3.

Before we finish this section it is useful to define the class of countably continuous

functions. It will not be in our focus but it will be used many times in the proofs.

We say that a function f : X → R (X ⊆ Rn) is countably continuous if it can be

represented as a union of countably many continuous partial functions. Shortly we

write f ∈ CC(X) or, in the case X = R, f ∈ CC. We also introduce the symbol

CCpart to denote
⋃

X⊆RCC(X).



Chapter 2

Classes related to generalized
continuity

The main focus of this chapter is the relationship between the Darboux-like families

(from Charts 1 and 2) and the class of Sierpiński-Zygmund functions. Most of the

following material (excluding the last section) is based on my paper [20]. Section 2.4

includes results from [22].

In the next section we present the main result and discuss its consequences. In

Section 2.2 we state and prove two auxiliary lemmas that are also of interest on their

own. Section 2.3 is devoted to the proof of the main result. The proof is based on

the above lemmas. Finally, in Section 2.4 we generalize the concept of Sierpiński-

Zygmund functions by defining Sierpiński-Zygmund sets. Then we state and prove

some properties of these sets.

2.1 Main result and its consequences

Let us start with considering the following problem.

Given two families F1, F2 ⊆ RR of real functions, can every function f ∈ RR

10



CHAPTER 2. CLASSES RELATED TO GENERALIZED CONTINUITY 11

be represented as f = f1 + f2, where fi ∈ Fi for i = 1, 2? In other words, does

F1 + F2 = {f1 + f2: fi ∈ Fi, i = 1, 2} equal to RR?

Obviously, the answer to the above question depends on the properties of these

families. For example, if F1 and F2 are too “good” in some sense (i.e., in terms of

continuity) then the answer will be negative. On the other hand, we may be interested

what happens if one of F1, F2 is “good” and the other one is “bad” in the same sense?

In particular, can we prove that every real function is a sum of two functions such

that one is continuous and the other one “extremely discontinuous”, say Sierpiński-

Zygmund? It is easy to see that if f1 ∈ C and f2 ∈ SZ then f1 +f2 ∈ SZ 6= RR. Thus,

the last question has a negative answer. Can we weaken somehow the concept of

continuity so that we get an affirmative answer? What will happen if the continuous

functions are replaced by the almost continuous functions? The answers to this and

many other related questions will be implied by our main result, that follows

Theorem 2.1.1.

(1) (MA) Add(D, SZ) ≥ Add(AC, SZ) ≥ ω.

(2) (MA) Add(SZ, AC) = Add(SZ, D) = c.

(3) If the theory “ZFC + ∃ measurable cardinal” is consistent then so is “ZFC +

Add(AC, SZ) > c > ω1.”

(4) Add(PC, SZ) = A(SZ) and Add(SZ, PC) = 2c.

The following remains an open problem. (See Fact 2.2.4.)
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Problem 2.1.2 Does the equality Add(AC, SZ) = ω hold in “ZFC + MA” (or in

“ZFC + CH”?)

Let us make here some comments about the theorem. Parts (1) and (3) give

only lower bound for Add(AC, SZ). So one may wonder whether it is possible to

give in ZFC any non-trivial upper bound for that number. However, in the model

used to prove (3) it is possible to have c+ = 2c, so it cannot be proved in ZFC that

Add(AC, SZ) < 2c. But it is unknown whether Add(AC, SZ) ≤ c+ holds in ZFC. The

next comment is about symmetry of Add. It is consistent that A(SZ) < 2c. (See [6].)

Hence part (4) implies that Add is not symmetric in general.

Next we give some corollaries of the main result. To state the first one, note that

−SZ = {−f : f ∈ SZ} = SZ. This observation, Proposition 1.2.1 and part (2) of

Theorem 2.1.1 immediately imply the following corollary.

Corollary 2.1.3 (MA) Every function f :R → R can be represented as a sum of

almost continuous and Sierpiński-Zygmund functions.

Let us mention that the corollary, so also parts (1) and (2) of Theorem 2.1.1,

cannot be proved in ZFC alone (i.e., without any additional assumptions.) Indeed,

if RR = AC + SZ then, by Proposition 1.2.1 (4), there exists an almost continuous

function which is also Sierpiński-Zygmund. An example of a model with no Darboux

(so also almost continuous) Sierpiński-Zygmund function is given in [1]. Hence we

can state

Corollary 2.1.4 The equalities RR = AC + SZ and RR = D + SZ are independent

of ZFC.
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One may ask whether Corollary 2.1.3 can be improved by replacing the family AC

of almost continuous functions by the family Ext of extendable functions. However,

it cannot be done. The reason is that every extendable function is continuous on

some perfect set. (See [4].) The above observation implies

Fact 2.1.5 Add(Ext, SZ) = Add(SZ, Ext) = 1.

One may also try to generalize Corollary 2.1.3 for all functions from Rn into R.

However, in the case n ≥ 2 it can be proved in ZFC that there is no almost continuous

function which is also Sierpiński-Zygmund. We have the following remark.

Remark 2.1.6 Let n ≥ 2. Then AC(Rn) ∩ SZ(Rn) = ∅ and

Add(AC(Rn), SZ(Rn)) = Add(SZ(Rn), AC(Rn)) = 1.

Proof. For every n ≥ 2 if f ∈ AC(Rn) ∩ SZ(Rn) then f |R2 ∈ AC(R2) ∩ SZ(R2).

(See [18].) Hence it is enough to prove the remark for n = 2. We construct the family

{By : y ∈ R} of c-many blocking sets in R3 with pairwise disjoint xy-projections and

whose union is the graph of a continuous function. Let By = {〈x, y, tan(x)〉: x ∈
(−π

2
, π

2
)} for y ∈ R. Every almost continuous function from R2 to R must intersect

all sets By. Thus it cannot be of Sierpiński-Zygmund type, since it agrees with the

function F (x, y) = tan(x) on a set of cardinality of continuum.

The second part of the conclusion follows from Proposition 1.2.1 (4).

Let us finish by making a comment about Add(D(Rn), SZ(Rn)). It is easy to see

that SZ(Rn)∩D(Rn) = ∅ because for each non-constant Darboux function f :Rn → R

there exists a real number y such that f−1(y) disconnects Rn. Based on this we obtain

Remark 2.1.7 Add(D(Rn), SZ(Rn)) = Add(SZ(Rn), D(Rn)) = 1 for n ≥ 2.
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2.2 Lemmas

This section consists of two auxiliary lemmas. To state the lemmas we need the

following definitions. For X ⊆ R by C<c(X) we denote the family of all functions

f : X → R which can be represented as a union of less than c-many partial continuous

functions. To simplify notation we write C<c and C<c
part for C<c(R) and

⋃
X⊆RC<c(X),

respectively. Observe that under the assumption of regularity of c (so also under MA)

SZ(X) + C<c(X) = SZ(X) and SZ(Y ) ∩C<c(Y ) = ∅ for any X,Y ⊆ R with |Y | = c.

The same assumption about c implies also that the union of any family F ⊆ C<c
part of

cardinality less than c contains a function from C<c(
⋃

f∈F dom(f)).

Now we introduce the next definition. Let A ⊆ R be everywhere of second

category, that is A∩ I is of second category for every nontrivial interval I. We define

FA as a family of all F ⊆ RR whose union
⋃

F contains no function from C<c(A∩B)

for any non-meager Borel set B. That is

FA =
{

F ⊆ RR: ∀B ∈ (B \M) ∀f ∈ C<c(A ∩B) f *
⋃

F
}

.

Lemma 2.2.1 (MA) Let F ∈ FA be a family such that |F | < A(SZ). There exists

a g ∈ SZ(A) such that g + F ⊆ SZ(A) and for every blocking set B ⊆ R2 there is a

non-empty open interval IB ⊆ dom(B) with the property that dom(B ∩ g) is dense

in IB. In particular, every extension ḡ:R→ R of g is almost continuous.

Proof. Let 〈fα : α < c〉 be a sequence of all continuous functions defined on Gδ

subsets of R.

(1) First we construct a partial real function g′ ∈ SZpart with dom(g′) ⊆ A and

having the properties as in the lemma. We do this by transfinite induction. We
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construct a sequence 〈gξ : ξ < c〉 of partial real functions satisfying the following

conditions for every α < c:

(a) Dα = dom(gα) is countable;

(b) gα is a dense subset of (fα|A) \⋃
ξ<α (fξ ∪ (Dξ × R) ∪⋃

(fξ − F )).

Notice that Dα∩Dβ = ∅ and Dα ⊆ A for α < β < c. Now we define g′ =
⋃

ξ<c gξ.

We will show that g′ has the required properties.

(i) g′, g′ + f ∈ SZpart for every f ∈ F .

Let ξ < c. We see from the condition (b) that [g′ = fξ], [(g′+f) = fξ] ⊆
⋃

α≤ξ Dα.

Hence |[g′ = fξ]|, |[(g′ + f) = fξ]| ≤ ξω < c.

(ii) For every blocking set B ⊆ R2 there is a non-empty open interval IB ⊆ dom(B)

with the property that dom(B ∩ g) is dense in IB.

B contains a continuous function q defined on a Borel set of second category.

(See [15].) Let αB be the smallest ordinal number such that fαB
agrees with q on

a set residual in some interval J ⊆ dom(B). B is closed and therefore fαB
|J ⊆ B.

From the definition of αB and MA we see that
⋃

ξ<αB
[fξ = q] is of first category as

the union of less than c-many sets of first category. Recall that F ∈ FA. This implies

that (I ∩ A) \ ⋃
ξ<αB

⋃
f∈F [(fξ − f) = q] is of second category for every nontrivial

interval I. The above holds because otherwise we would have that (K ∩ A) ⊆
⋃

ξ<αB

⋃
f∈F [(fξ − f) = q] for some K ∈ B \M. Then for every x ∈ (K ∩ A) there

are ξ < αB and f ∈ F such that fξ(x) − f(x) = q(x). Define h: (K ∩ A) → R by

h(x) = fξ(x)− q(x) = f(x). It is easy to see that h is a subset of both
⋃

ξ<αB
(fξ− q)
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and
⋃

F . In particular, it implies that h ∈ C<c(K ∩ A) which contradicts the

assumption that F ∈ FA.

Hence (J ∩A) \⋃
ξ<αB

(
⋃

f∈F [(fξ − f) = q]∪ [fξ = q]∪Dξ) is of second category.

Therefore DαB
is dense in some non-empty open interval IB ⊆ J . This implies that

dom(gαB
∩B) is dense in IB (gαB

and fαB
coincide on DαB

∩J .) Since g′∩B ⊇ gαB
∩B,

we also have that dom(g′ ∩B) is dense in IB.

(2) Let g′′ : A\dom(g′) → R be a Sierpiński-Zygmund function such that g′′+F ⊆
SZpart. Such a function exists because |F | < A(SZ). We define g = g′ ∪ g′′. We see

that g ∈ SZ(A), any extension of g onto R is in AC, and g + F ⊆ SZ(A).

Lemma 2.2.2 (MA) Let {fi}n
1 ⊆ RR, n = 1, 2, . . .. There exists {f ′i}n

1 ∈ FA such

that fi|Ai ∈ C<c(Ai), where Ai = [fi 6= f ′i ].

Proof. The proof is by induction on number n of functions.

Assume that the lemma is true for every {gi}n−1
1 ⊆ RR, n ≥ 1. Let us fix {fi}n

1 ⊆
RR. We will construct a family {f ′i}n

1 ∈ FA such that fi|[fi 6= f ′i ] ∈ C<c([fi 6= f ′i ]) for

all i ≤ n.

We start with showing that the following claim holds for all f, h, h′ ∈ RR.

If f |[f 6= h] ∈ C<c
part and h|[h 6= h′] ∈ C<c

part then f |[f 6= h′] ∈ C<c
part.

This is so because we have that [f 6= h′] ⊆ [f 6= h] ∪ [h 6= h′] and consequently

f |[f 6= h′] ⊆ f |([f 6= h] ∪ [h 6= h′]) = f |[f 6= h] ∪ f |([h 6= h′] \ [f 6= h]) ⊆

⊆ f |[f 6= h] ∪ h|[h 6= h′].

This completes the proof of the claim.
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Now observe that, by the inductive assumption, there exists {hi}n
2 ∈ FA such

that fi|[fi 6= hi] ∈ C<c
part for i = 2, . . . , n. Put h1 = f1. If {h′i}n

1 ∈ FA is such

that hi|[hi 6= h′i] ∈ C<c
part for i = 1, . . . , n then, based on the above claim, also

fi|[fi 6= h′i] ∈ C<c
part for all i. So without loss of generality we may assume that

{fi}n
2 ∈ FA.

Next we define the family Bf1,...,fn by

Bf1,...,fn = {A ∩B: B ∈ B \M & ∃f ∈ C<c(A ∩B) f ⊆
⋃

fi}.

There exists a maximal element Amax in Bf1,...,fn with respect to the relation ⊆∗

defined by

X1 ⊆∗ X2, if X1 \X2 is of first category.

To prove the existence let us consider S = {B ∈ B \M: A∩B ∈ Bf1,...,fn}. For every

B ∈ S we define a maximal open set UB such that B is residual in UB. Since R has a

countable base, there is a sequence 〈Bn ∈ S: n < ω〉 such that
⋃

B∈S UB =
⋃

n<ω UBn .

We claim that Amax =
⋃

n<ω(A∩Bn) is the desired maximal element. First we notice

that Amax ∈ Bf1,...,fn . Now, let A ∩ B ∈ Bf1,...,fn . From the properties of the sets

Bn (n < ω) we get that B ⊆∗ UB ⊆
⋃

n<ω UBn ⊆∗
⋃

n<ω Bn. So A ∩B ⊆∗ Amax.

Now, let f be the function associated with Amax (e.g. f ∈ C<c(Amax) and f ⊆
⋃

fi). The function f can be represented as f =
⋃

fi|Ai, where
⋃

i≤n Ai = Amax,

Ai ∩ Aj = ∅ (i 6= j), and fi|Ai ∈ C<c(Ai). Let us consider the following functions

f ′i = fi|(R \ Ai) ∪ gi, where gi ∈ SZ(Ai) (i = 1, . . . , n). We will show that {f ′i}n
1 is

the required family, that is {f ′i}n
1 ∈ FA. Assume, by contradiction, that {f ′i}n

1 /∈ FA.

Thus there exists a set A′ of the form A∩B for some B ∈ B\M such that A′ =
⋃

A′
i,

A′
i are pairwise disjoint and f ′i |A′

i ∈ C<c(A′
i). Let us denote

⋃
(f ′i |A′

i) by f ′. Note
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that A′ ⊆∗ Amax. Since g1 ∈ SZ(A1), we have |A1 ∩ A′
1| < c. This observation and

Martin’s Axiom imply that A1 ∩ A′
1 ∈ M. So we may assume A1 ∩ A′

1 = ∅. Then

f ′|(A1 ∩A′) ⊆ ⋃n
i=2 fi. This implies that f ′|(A1 ∩A′) ∪ f |(⋃n

i=2 Ai ∩A′) ∈ C<c(A′).

Hence
⋃n

i=2 fi contains a function from C<c(A′). So {fi}n
2 6∈ FA, a contradiction.

Let us make here a comment about Lemma 2.2.2. One could expect the lemma

to hold for bigger families of functions. However, Lemma 2.2.2 cannot be generalized

for infinite families of functions. It is implied by the following counterexample.

Example 2.2.3 (CH) There exists an infinite family {fn}n<ω ⊆ RR for which the

conclusion of Lemma 2.2.2 fails.

Proof. Continuum Hypothesis implies the existence of an Ulam matrix on R, e.g.

the family {Mn
ξ : n < ω, ξ < c} of subsets of R with

Mn
ξ ∩Mn

α = ∅, for n < ω, ξ < α < c,

the complement of
⋃
n<ω

Mn
ξ is a countable set for ξ < c.

Fix an enumeration {xξ : ξ < c} of R. Define fn as an extension of
⋃

ξ<c xξχMn
ξ

onto

R, for every n < ω. We are now in a position to show that F = {fn: n < ω} is

the counterexample for the conclusion of Lemma 2.2.2. Since every vertical section

of
⋃

F is countable and every horizontal section is comeager, it follows that
⋃

F is

non-Borel set of second category. Now, let An ⊆ R be such that fn|An ∈ CC(An),

for every n. Since the graph of a continuous function is meager in R2, we obtain that
⋃

n<ω fn|An is also meager as a union of countably many meager sets. We conclude

from this that there exists a meager horizontal section of
⋃

n<ω fn|An. Therefore the

set
⋃

F \⋃
n<ω fn|An contains a constant function defined on comeager Borel set.
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Using very similar technique as the above we can prove

Fact 2.2.4 (CH) Either Add(AC, SZ) = ω or Add(AC, SZ) > c.

Proof. Let us assume that F = {φξ: ξ < c} ⊆ RR witnesses Add(AC, SZ) ≤ c.

For every n < ω, define a function f ∗n as an extention of
⋃

ξ<c φξχMn
ξ

onto R, where

{Mn
ξ : n < ω, ξ < c} is an Ulam matrix. We claim that {f ∗n: n < ω} witnesses

Add(AC, SZ) ≤ ω. To see this fix an h ∈ AC. By our assumption about F , there

exists an ξ0 < c such that h + fξ0 6∈ SZ. That means h + fξ0 is continuous on a

set X of cardinality continuum. Since R \ ⋃
n<ω Mn

ξ0
is countable we obtain that

|X ∩Mm
ξ0
| = c for some m < ω. Hence h + f ∗m is continuous on a set of cardinality

continuum which means that h + f ∗m 6∈ SZ.

2.3 Proof of the main result

In this section we prove the main result of this chapter, that is Theorem 2.1.1.

Proof of Theorem 2.1.1 (1): Add(AC, SZ) ≥ ω (under MA).

We begin by fixing F = {f1, . . . , fn} ⊆ RR. Let F ′ = {f ′1, . . . , f ′n} ∈ FR be a

corresponding family given by Lemma 2.2.2 for A = R. Based on Lemma 2.2.1, we

can find a g ∈ AC∩ SZ such that g + F ′ ⊆ SZ. Since fi|[f ′i 6= fi] ∈ C<c
part and g ∈ SZ,

we obtain that g + fi ∈ SZ (for i = 1, 2, . . ., n.)

In order to prove part (2) of Theorem 2.1.1 we need to state one straightforward

lemma.

Lemma 2.3.1 Add(SZ, D) ≤ 2<c.
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Proof. Let us consider the following family F<c = {rχA: A ∈ [R]<c, r ∈ Q}.
Obviously |F<c| = 2<c. We claim that

∀g∈SZ g + F<c 6⊂ D.

To see this, fix g ∈ SZ. Let r0 ∈ Q such that inf g < r0 < sup g. Then g− r0χA 6∈ D,

where A = g−1[r0].

Proof of Theorem 2.1.1 (2): Add(SZ, AC) = Add(SZ, D) = c (under MA).

Since Add(SZ, AC) ≤ Add(SZ, D) and Add(SZ, D) ≤ 2<c = c (assuming MA), it

is sufficient to prove that for every family F ⊆ RR of cardinality less than c there

exists a Sierpiński-Zygmund function h:R→ R satisfying the property h + F ⊆ AC.

Let F = {fξ: ξ < κ} ⊆ RR (κ = |F | < c) and {Aξ: ξ < κ} be a partition of

R into Bernstein sets. By Lemma 2.2.2, for every ξ < κ we can find a function f ′ξ

such that the singleton {f ′ξ} belongs to FAξ
and f ′ξ|[f ′ξ 6= fξ] ∈ C<c

part. Now, applying

Lemma 2.2.1 for every ξ < κ we obtain a sequence 〈gξ: Aξ → R|ξ < κ〉 for which the

following holds

gξ + f ′ξ ∈ SZpart and any extension of gξ on R is in AC, for ξ < κ.

Since f ′ξ|[f ′ξ 6= fξ] ∈ C<c
part and SZ(X) + C<c(X) = SZ(X) for every X ⊆ R, we

conclude that gξ + fξ ∈ SZpart, ξ < κ. Put h =
⋃

ξ<κ−(gξ + fξ). Since Martin’s

Axiom implies the regularity of c we obtain that h ∈ SZ. Clearly, h + F ⊆ AC.

As a remark let us notice that parts (1) and (2) of the main result, as well as

Lemma 2.2.1 and Lemma 2.2.2, could be proved under weaker assumptions. The

proofs require only two consequences of Martin’s Axiom: c = c<c (this implies regu-

larity of c); the union of less than c-many meager sets is meager.
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Proof of Theorem 2.1.1 (3): If the theory “ZFC + ∃ measurable cardinal” is

consistent then so is “ZFC + Add(AC, SZ) > c > ω1.”

We will show that the existence of c-additive σ-saturated ideal J in P (R) con-

taining M implies Add(AC, SZ) > c. It is known that the existence of such an ideal

is equiconsistent with “ZFC + ∃ measurable cardinal.”1 (See [13].)

First notice that we may assume that J ∩B = M. To see this suppose that there

exists a Borel set B of second category in J . B is residual in some open interval I.

Then I ∈ J because I \ B is meager and I = (B ∩ I) ∪ (I \ B). Now, let U be a

maximal open set belonging to J . Such a set exists because the union of all open

sets from J can be represented as a union of countable many such sets. We have that

R \ U contains a nonempty open interval I0. Otherwise it would be nowhere-dense

and then R = U ∪(R\U) ∈ J . Now, any homeomorphism between I0 and R induces

the desired ideal on R.

The schema of the proof is similar to the idea of combining Lemmas 2.2.1 and

2.2.2 in the proof of Add(AC, SZ) ≥ ω. First step is to show that

(∗) for each f :R → R there exists an fJ ∈ RR such that f |[f 6= fJ ] ∈ CCpart and

fJ |X /∈ CC(X) for every X /∈ J .

To see this fix an f ∈ RR. We claim that there exists a set Y such that f |Y ∈
CC(Y ) and Y ′ ⊆J Y for all Y ′ satisfying f |Y ′ ∈ CC(Y ′), where ⊆J is defined by

Z1 ⊆J Z2, if Z1 \ Z2 ∈ J .

1The desired model is obtained by adding κ-many Cohen reals, where κ is a measurable cardinal
in the ground model.
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If the claim did not hold then we could easily construct a strictly increasing (in

terms of ⊆J ) uncountable sequence of subsets of R. Indeed, assume that the desired

sequence of sets Xξ is defined for all ξ < α, where α < ω1. Note that f |⋃ξ<α Xξ ∈
CCpart. By assumption there exists a set X such that

⋃
ξ<α Xξ ⊆J X 6⊆J ⋃

ξ<α Xξ

and f |X ∈ CCpart. We set Xα = X. Thus by transfinite induction the sequence is

defined for all α < ω1. But the existence of this sequence would imply the existence

of an uncountable family of disjoint sets outside of J which contradicts the fact that

J is σ-saturated.

So we proved that the set Y exists. Now put fJ = f |(R \ Y ) ∪ g, where g is any

function from SZ(Y ). Clearly, fJ is the desired function from (∗).
In the next step we fix a family F of real functions of cardinality c. Let F =

{hξ: ξ < c} be an enumeration of F and 〈fα : α < c〉 be a sequence of all continuous

functions defined on Gδ subsets of R. Based on the previous reasoning we may assume

that hξ|X /∈ CC(X) for every X /∈ J and ξ < c. Notice that if γ, α < c and fα|X ⊆
⋃

ξ,β<γ(fξ−hβ) then X ∈ J . This is so since X ⊆ ⋃
ξ,β<γ[fα = fξ−hβ] and every set

[fα = fξ−hβ] = [hβ = fξ−fα] ∈ J . Consequently, the set dom(fα \
⋃

ξ,γ<α(fξ−hγ))

does not belong to J provided dom(fα) 6∈ J .

Now we construct a sequence 〈gξ : ξ < c〉 of partial functions such that

gα is a countable dense subset of fα \
⋃

ξ,γ<α

((fξ − hγ) ∪ fξ ∪ L(Dξ)) for α < c,

where Dγ = dom(gγ).

The same kind of argument as in the proof of Lemma 2.2.1 (i)&(ii) shows that

g′ =
⋃

ξ<c gξ is in SZpart and intersects every blocking set. So if g is any Sierpiński-

Zygmund extension of g′ then g ∈ AC and g + F ⊆ SZ.
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Proof of Theorem 2.1.1 (4): Add(PC, SZ) = A(SZ) and Add(SZ, PC) = 2c.

First we prove the equality Add(PC, SZ) = A(SZ). In order to do it we need the

following easy lemma.

Lemma 2.3.2 For every function f ∈ RR there is a function f ′ ∈ PC such that

|[f 6= f ′]| ≤ ω.

Proof. Let g:Q → Q be a function with dense graph. Then f ′ = g ∪ f |(R \Q) is

the required function.

Now, to show Add(PC, SZ) = A(SZ), note that Add(PC, SZ) ≤ Add(RR, SZ) =

A(SZ). What is left to prove is that Add(PC, SZ) ≥ A(SZ). Let F ⊆ RR be a

family of cardinality less than A(SZ). So there exists a function g ∈ RR such that

g + F ⊆ SZ. Let g′ ∈ PC be a function obtained from g by applying Lemma 2.3.2.

Since every Sierpiński-Zygmund function modified on a set of cardinality less than c

remains Sierpiński-Zygmund, it is easy to see that g′ + F ⊆ SZ.

Before we start proving that Add(SZ, PC) = 2c, we introduce the following

Definition 2.3.3 A set X ⊆ R2 is called Sierpiński-Zygmund set (shortly SZ-set),

if for every partial real continuous function f we have |f ∩X| < c.

An argument, similar to the one used in proving the existence of Sierpiński-Zygmund

function, leads to

Lemma 2.3.4 There exists an SZ-set X ⊆ R2 such that |R \ Xx| < c for every

x ∈ R, where Xx = {y ∈ R: 〈x, y〉 ∈ X}.
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Proof. Let 〈xα : α < c〉 and 〈fα : α < c〉 be the sequences of all real numbers and

all continuous functions defined on a Gδ subset of R, respectively. We will define the

set X by defining its vertical sections by transfinite induction. For every α < c we

put

Xxα = R \ {fξ(xα): ξ < α}.

Define X =
⋃

α<c{xα} ×Xxα . It is obvious that X has the required properties.

Corollary 2.3.5 There exists a family {Qx ⊆ R: x ∈ R} of pairwise disjoint count-

able dense sets such that
⋃∏

x∈RQx is an SZ-set.

The next lemma is proved in [7].

Lemma 2.3.6 [7, Lemma 2.2] If B ⊆ R has cardinality c and H ⊆ QB is such that

|H| < 2c then there is a g ∈ QB such that h ∩ g 6= ∅ for every h ∈ H.

We give more general version of this lemma.

Lemma 2.3.7 If B ⊆ R has cardinality c and H ⊆ ∏
x∈B Qx is such that |H| < 2c

then there is a g ∈ ∏
x∈B Qx such that h ∩ g 6= ∅ for every h ∈ H.

Proof. For every x ∈ B let fx: Qx → Q be a bijection. Now, for each h ∈ H we

define h′ as follows

h′(x) = fx(h(x)) for all x ∈ B.

The family H ′ = {h′: h ∈ H} ⊆ QB has cardinality less than 2c. Thus, by

Lemma 2.3.6, there is a function g′ ∈ QB intersecting every element of H ′. Put

g(x) = f−1
x (g′(x)), for all x ∈ B. It is clear that g ∈ ∏

x∈B Qx and h ∩ g 6= ∅ for

every h ∈ H.
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Next we show Add(SZ, PC) = 2c. The proof follows the idea of the proof of [7,

Theorem 1.7 (3)]. Let F ⊆ RR be such that |F | < 2c. We will find a g ∈ SZ satisfying

the condition g + F ⊆ PC.

Let G be the family of all triples 〈I, p, m〉 where I is a nonempty open interval

with rational end-points, p ∈ Q, and m < ω. For each 〈I, p,m〉 ∈ G define a set

B〈I,p,m〉 ⊆ I of size c such that B〈I,p,m〉 ∩ B〈J,q,n〉 = ∅ for any distinct 〈I, p, m〉 and

〈J, q, n〉 from G.

Let 〈I, p, m〉 ∈ G be fixed. For each f ∈ F choose hf
〈I,p,m〉 ∈

∏
x∈B〈I,p,m〉

Qx such

that ∣∣∣p−
(
f(x) + hf

〈I,p,m〉(x)
)∣∣∣ <

1

m
for every x ∈ B〈I,p,m〉.

Then, by Lemma 2.3.7 used with a set H〈I,p,m〉 =
{

hf
〈I,p,m〉: f ∈ F

}
used in place H,

there exists a g〈I,p,m〉 ∈
∏

x∈B〈I,p,m〉
Qx such that

∀f ∈ F ∃x ∈ B〈I,p,m〉 hf
〈I,p,m〉(x) = g〈I,p,m〉(x).

Now, let g ∈ ∏
x∈RQx be a common extension of all functions g〈I,p,m〉. Since, by

Corollary 2.3.5,
⋃ ∏

x∈RQx is an SZ-set we conclude that g is of Sierpiński-Zygmund

type. The function g has also the following property. For every 〈I, p, m〉 ∈ G and

every f ∈ F there exists x ∈ B〈I,p,m〉 ⊆ I such that

|p− (f(x) + g(x))| < 1

m
.

So for each f ∈ F , the function f + g is dense in R2. Thus f + g ∈ PC.
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2.4 Sierpiński-Zygmund sets on the plane

Let us recall that a set X ⊆ R2 is Sierpiński-Zygmund (SZ-set) if it does not contain

any partial continuous function with the domain of cardinality continuum c. (See

Definition 2.3.3.) We denote the family of all SZ-sets by JSZ . Since every Sierpiński-

Zygmund function is also an SZ-set we have that JSZ is not empty.

The next fact follows directly from the definition.

Fact 2.4.1 JSZ is a cf(c)-additive ideal.

Proof. Take a κ < cf(c). Let {Xξ: ξ < κ} ⊆ JSZ and f ⊆ ⋃
ξ<κ Xξ be a partial

continuous function. Since Xξ is SZ-set, we have that |f ∩ Xξ| < c for each ξ < κ.

Consequently, |f ∩⋃
ξ<κ Xξ| = |⋃ξ<κ(f ∩Xξ)| < c.

The question that one could ask here is how “big” an SZ-set can be. An example

of the SZ-set that can be considered “big” in some sense is given by Lemma 2.3.4.

Observe that the complement of every vertical section of the set X from Lemma 2.3.4

has size less than c. In particular, if MA holds then every vertical section is residual in

R. Moreover, under CH, the complement of every vertical section of X is countable.

It turns out that the existence of such SZ-set (i.e., with co-countable vertical sections)

is equivalent to CH. We state

Proposition 2.4.2 CH is equivalent to the existence of a SZ-set X ⊆ R2 with the

following property

|R \Xx| ≤ ω for every x ∈ R.

Proof. The existence of the desired set under the assumption of CH follows from

the previous discussion. So we need to prove the opposite implication. Assume, by
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the way of contradiction, that the desired set X exists and CH does not hold, e.g.

c > ω1. Since X is an SZ-set we get

(∗) Xy = {x ∈ R: 〈x, y〉 ∈ X} has cardinality less than c for every y ∈ R.

We claim that there exists an A ∈ [R]ω1 such that |⋃y∈A Xy| < c. The following two

cases are possible.

Case 1. There exists a κ < c such that Zκ = {y: |Xy| = κ} is uncountable.

Then we choose A ∈ [Zκ]
ω1 . Obviously, |⋃y∈A Xy| = κω1 < c.

Case 2. |Zκ| ≤ ω for every cardinal κ < c.

Put Z = {|Xy|: y ∈ R} and observe that R =
⋃

κ∈Z Zκ. (∗) implies that if κ ∈ Z

then κ < c. Consequently, since the union of less than continuum many countable sets

has size less than continuum, we conclude that |Z| = c. Let λ be the ω1-st element

of Z. We define A = {y: |Xy| < λ}. Clearly, |⋃y∈A Xy| = |⋃κ<λ Zκ| ≤ λω < c.

Now choose an x ∈ R\⋃y∈A Xy and notice that ({x}×A)∩X = ∅. So A ⊆ R\Xx.

This is in contradiction with the fact that every vertical section of X is co-countable.

It is worth remarking here that SZ-sets with the Baire property or measurable

are “small.” It means that every measurable SZ-set has measure zero and every

SZ-set with the Baire property is meager. This follows from Fubini Theorem and

Kuratowski-Ulam Theorem, respectively. But do such “small” SZ-sets exist? The

answer is positive. It is easy to construct a Sierpiński-Zygmund function (so also an

SZ-set) contained in R × C, whose domain is the whole real line. C is the standard

linear Cantor set. Observe also that there are “big” SZ-sets in terms of outer measure.

The set X from Lemma 2.3.4 is of full outer measure. To see this, choose a closed set
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F ⊆ R2 \ X. Based on the properties of X we conclude that every vertical section

of F is countable. Hence F is of measure zero. This proves that X is of full outer

measure.

The above discussion states that “good” SZ-sets (in terms of measure or Baire

property) are “small”. However, we have the following

Remark 2.4.3 There exists an SZ-set which is Marczewski measurable but not Mar-

czewski null.

Proof. Recall that a set M ⊆ Rn is Marczewski measurable is for every perfect set

P there is a perfect subset Q of P such that Q ⊆ M or Q∩M = ∅. M is Marczewski

null if the second condition holds for every P .

We claim that the set X from Lemma 2.3.4 is the desired set. Let us see why

X is Marczewski measurable but not Marczewski null. Fix a perfect set P ⊆ R2.

There are two possible cases. Either some vertical section Pa of P is perfect, or all

vertical sections are countable. In the first case, there is a Q ⊆ {a} × Pa completely

contained in X, because the complement of every vertical section of X has cardinality

less than c. In the second case, we can find a partial continuous function f ⊆ P

defined on a perfect set. To see this consider a function g: dom(P ) → R defined by

g(x) = sup(Px ∩ (−∞, 0]). The function g is upper semi-continuous so also of Baire

class one. Thus, g contains a continuous function defined on a perfect set. (See [19].)

Since |f ∩ X| < c, the restriction of f to some perfect subset R of dom(f) is

disjoint with X. Note that f |R is a perfect set. Thus P contains a perfect subset

disjoint with X. This completes the proof of our remark.

Another interesting observation is that the property of being an SZ-set is not
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preserved under the homeomorphic images. It is easy to see that any vertical line is

an SZ-set, but after a rotation, for example about π
4
, it is not an SZ-set any more.

However, if h:R2 → R2 is a homeomorphism preserving vertical lines then h[X] is

an SZ-set for every X ∈ JSZ .

Fact 2.4.4 Let h:R2 → R2 be an homeomorphism such that h[L] is a vertical line

for every vertical line L. Then h{JSZ} = {h[X]: X ∈ JSZ} = JSZ .

Proof. First we show the inclusion h{JSZ} ⊆ JSZ . It is easy to see that if f : A → R

is a partial continuous function then h−1[f ]: A → R is also continuous. This implies

that for every X ∈ JSZ , h[X] is also in JSZ .

Now to show the other inclusion, let us fix a Y ∈ JSZ . Note that h−1 also

preserves all vertical lines. Thus, from the first part of the proof, X = h−1[Y ] ∈ JSZ .

Hence Y = h[X] ∈ h{JSZ}.

Definition 2.4.5 A set X ⊆ R2 is called SZ-shiftable, if there exists a function

f :R→ R such that f + X is SZ-set.

We denote the family of all SZ-shiftable sets by SZshift. Obviously JSZ ⊆ SZshift,

so SZshift is not empty.

Lemma 2.4.6 Let X ⊆ R2. If for all x ∈ R and A ∈ [R]<c there exists an a ∈ R
such that (a + A) ∩Xx = ∅, then A is SZ-shiftable.

Proof. Let 〈xα : α < c〉 and 〈fα : α < c〉 be the sequences of all real numbers

and all continuous functions defined on a Gδ subset of R, respectively. We will

define a function f :R→ R which shifts X into JSZ , using transfinite induction. For
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every α < c we choose f(xα) ∈ R such that (f(xα) + Xxα) ∩ {fξ(xα): ξ < α} = ∅.
Such a choice is possible because of the assumptions on X. It is easy to see that

dom ((f + X) ∩ fβ) ⊆ {xξ: ξ < β} for each β < c. Thus f + X ∈ JSZ .

Recall that under Martin’s Axiom (MA) the union of less than c meager sets is

meager. Suppose that A ∈ [R]<c and B ⊆ R is meager. Then the set B − A =
⋃

x∈A(B − x) is meager as a union of less than c meager sets. Now, if we choose an

a /∈ B − A then (a + A) ∩ B = ∅. Notice that the same argument can be repeated

for the sets of measure zero.

The above discussion and Lemma 2.4.6 immediately imply

Corollary 2.4.7 (MA) If each vertical section of a set X ⊆ R2 is meager or of

measure zero, then X ∈ SZshift.

It may also be of interest to determine whether SZshift is closed under the union

operation. Fact 2.4.1 states, in particular, that the union of two SZ-sets is also an

SZ-set. Thus, the natural question that appears here is whether the same is true for

SZ-shiftable sets. It turns out not to be the case.

Example 2.4.8 There exist A1, A2 ∈ SZshift such that A1 ∪ A2 = R2 6∈ SZshift.

Proof. Put A1 to be the set X from Lemma 2.3.4 and A2 to be its complement.

Based on Lemma 2.4.6 A2 is SZ-shiftable. Next, notice that A1 ∈ JSZ ⊆ SZshift.

Finally, A1 ∪ A2 = R2 and obviously R2 is not in SZshift.

Before we finish this section let us make a comment about Theorem 2.1.1 (1).

Note that this result can be expressed using the notion of SZ-sets. Under MA the

following holds:
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If, for some fixed n ∈ ω, every vertical section of the set X ⊆ R2 has at most n

elements then there exists an almost continuous function f :R → R such that

f + X ∈ JSZ .

We generalize this result.

Theorem 2.4.9. (MA) If every vertical section of the set X ⊆ R2 is finite then

there exists an almost continuous function f :R→ R such that f + X ∈ JSZ .

Proof. Let us consider the partition {Hn: n ∈ ω} of R, where Hn is defined by

Hn = {x ∈ R: |Xx| = n}. Let Gn ⊆ R be a maximal open set such that Hn is

everywhere of second category in Gn. Such a set can be easily constructed. Simply

define Gn as the interior of the set R\⋃I∈In
I, where In is the set of all open intervals

in which Hn is meager.

We claim that for every n < ω, there exists a function gn: (Gn ∩Hn) → R such

that gn + X = {〈x, gn(x) + y〉: x ∈ (Gn ∩ Hn), 〈x, y〉 ∈ X} ∈ JSZ and
⋃

n<ω gn

intersects every blocking set B.

First observe that this claim implies the conclusion of the theorem. Put g:R→ R

to be an extension of
⋃

n<ω gn such that [g|(R \ ⋃
n<ω Gn ∩ Hn)] + X is an SZ-set.

This extension exists based on Corollary 2.4.7. Thus, g+X is the union of countable

many SZ-sets. Consequently, g + X ∈ JSZ . Clearly, g intersects every blocking set,

so g ∈ AC.

To complete the proof we need to show the above claim. Fix an n < ω and put

An = (Gn∩Hn)∪⋃
I∈In

I. An is everywhere of second category. Notice also that the

part of X contained in (Gn ∩Hn)×R can be covered by n functions f1, . . . , fn from

R to R. So, by Lemma 2.2.1 and Lemma 2.2.2, there exists a function g′n: An → R
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such that g′n + {f1, . . . , fn} ⊆ SZpart and dom(g′n ∩ B) is dense in some non-empty

open interval IB for every blocking set B. Thus, if we define gn = g′n|(Gn ∩Hn) then

gn + X ∈ JSZ .

What remains to prove is that
⋃

n<ω gn intersects every blocking set B. Notice

that IB ∩Gn 6= ∅ for some n. Thus, gn ∩ B 6= ∅. Consequently, ∅ 6= B ∩⋃
n<ω gn ⊆

B ∩ g. This finishes the proof.

In other words, under MA every planar set X with finite vertical sections can be

shifted into JSZ by an almost continuous function.



Chapter 3

Classes related to additive
properties

This chapter is devoted entirely to the concept of additivity and is based on the

paper [21]. As said in the preliminaries, the additive functions were defined as the

solutions to Cauchy’s Functional Equation, which plays a very important role in

the theory of functional equations. It is also of interest, similarly as in the case

of Darbuox-like functions, to consider functions that “badly” violate the additive

condition. That is, functions f :R→ R satisfying the condition f(x+y) 6= f(x)+f(y),

for all x, y ∈ R. We give two examples of families of such functions. In Section 3.1 we

define and discuss a class of functions whose graph is a linearly independent set over

Q. Then in Section 3.2 we investigate a proper subfamily of this class: functions

whose graph is a Hamel basis. Throughout this chapter, 0 will denote the zero

element of Rn.

33
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3.1 Functions with linearly independent graphs

Definition 3.1.1 We say that a function f :Rn → R is linearly independent over

Q (shortly: linearly independent) if f is linearly independent subset of the space

〈Rn+1;Q; +; ·〉.

The symbol LIF(Rn) stands for the family of all linearly independent functions.

In the case when n = 1 we simply write LIF. An easy example shows that the family

LIF(Rn) is non-empty for all n ≥ 1.

Example 3.1.2 Every injection from Rn into a Hamel basis H ⊆ R is linearly

independent over Q.

Proof. Let f :Rn → H be an injection. Assume that for some p1, . . . , pn ∈ Q and

pairwise different x1, . . . , xn ∈ Rn

n∑
1

pi〈xi, f(xi)〉 = 0.

Since f(x1), . . . , f(xn) ∈ H are all different and H is linearly independent over Q,

we conclude that p1 = . . . = pn = 0.

As mentioned in the introductory part of this chapter, the linearly independent

functions lack the additive property. Thus, AD(Rn) ∩ LIF(Rn) = ∅.
Below we give some basic properties of the class LIF(Rn). Note that Fact 3.1.3 (i)

has its counterpart in the case of continuous and Sierpiński-Zygmund functions.

Fact 3.1.3

(i) LIF(Rn) + AD(Rn) = LIF(Rn).
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(ii) If f ∈ LIF(Rn) then |f [Rn]| = c.

(iii) If f :Rn → R is continuous on some non-empty open set then f /∈ LIF(Rn).

(iv) LIF(Rn) ∩ CC(Rn) 6= ∅.

(v) A(LIF(Rn)) = c.

Proof. (i) Let f ∈ LIF(Rn) and g ∈ AD(Rn). Fix x1, . . . , xk ∈ Rn and q1, . . . qk ∈
Q. Now suppose that

k∑
1

qi〈xi, f(xi) + g(xi)〉 = 0.

Thus, in particular,
∑k

1 qixi = 0. Since g is additive we have
∑k

1 qig(xi) = 0.

Consequently,
∑k

1 qi〈xi, f(xi)〉 = 0. The linear independence of f implies that q1 =

. . . = qk = 0. So f + g ∈ LIF(Rn).

(ii) Notice that it suffices to prove part (ii) for n = 1. Assume, by the way of

contradiction, that f ∈ LIF and |f [R]| = κ < c. We claim that there exist positive

x1, x2 ∈ R with the following properties:

x1 6= x2, f(x1) = f(x2), and f(−x1) = f(−x2).

To see the claim choose y0 ∈ R such that |f−1(y0) ∩ (0,∞)| = κ+. Such an element

exists because (0,∞) ⊆ ⋃
y∈R f−1(y) and |f [R]| = κ < c. Since y0 satisfies the

condition |f [−f−1(y0)]| ≤ κ < κ+ ≤ | − f−1(y0)|, there exist different x1, x2 ∈
f−1(y0) ∩ (0,∞) satisfying the equality f(−x1) = f(−x2). Note that x1 and x2 are

the required points.

Next observe that

〈x1, f(x1)〉+ 〈 − x1, f(−x1)〉 = 〈x2, f(x2)〉+ 〈 − x2, f(−x2)〉.
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This leads to a contradiction with f ∈ LIF.

(iii) Like in part (ii), it is enough to prove the case n = 1. Let (a− h, a + h) ⊆ R
be a non-empty open interval such that f |(a − h, a + h) is continuous. Consider

a function g: [0, h) → R defined by g(x) = f(a − x) + f(a + x). Obviously, g is

also continuous. If g(x) = g(0) = 2f(a) for all x ∈ [0, h) then f is not linearly

independent. Hence we may suppose that there exist two different x1, x2 ∈ (0, h)

such that g(x1) = 2f(a) + p1 and g(x2) = 2f(a) + p2 for some non-zero rationals

p1, p2. Then we have

p2〈2a, g(x1)〉 − p1〈2a, g(x2)〉 ∈ LinQ(〈2a, 2f(a)〉) = LinQ(〈a, f(a)〉). (3.1)

Now, recall the definition of g and note 〈a− xi, f(a− xi)〉+ 〈a + xi, f(a + xi)〉 =

〈2a, g(xi)〉 for i = 1, 2. Based on (3.1), we see that f is not linearly independent.

(iv) Let us first recall that Rn can be decomposed into (n + 1) 0-dimensional

spaces E0, . . . , En. For every perfect set Q ⊆ R and 0-dimensional space E there

exists an embedding hE
Q: E → Q. (See e.g., [11].) It is also known that there exists

a perfect set P ⊆ R which is linearly independent over Q. (See e.g., [16].) Now,

if P = P0 ∪ P1 ∪ . . . ∪ Pn is a partition of P into (n + 1) perfect sets then, by

Example 3.1.2, hEi
Pi

: Ei → Pi is a linearly independent subset of Rn+1. It is easy to

see that h =
⋃n

0 hEi
Pi

:Rn → P is one-to-one. So, again by Example 3.1.2, h is linearly

independent. Obviously, h ∈ CC.

(v) We start with showing that A(LIF(Rn)) ≥ c. Let Rn = {xξ: ξ < c}. Fix an

F ⊆ RRn
of cardinality less than continuum. We will define, by induction, a function

h:Rn → R such that for every f ∈ F , h + f is one-to-one and (h + f)[Rn] is linearly

independent. Then, by Example 3.1.2, h + F ⊆ LIF(Rn).
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Let α < c. Assume that h is defined on {xξ: ξ < α}, for all f ∈ F the function

h + f is one-to-one, and (h + f)[{xξ: ξ < α}] is linearly independent. We will define

h(xα). Choose

h(xα) ∈ R \ LinQ

(⋃

f∈F

((h + f)[{xξ: ξ < α}] ∪ {f(xα)})
)

.

This choice is possible since

∣∣∣⋃f∈F ((h + f)[{xξ: ξ < α}] ∪ {f(xα)})
∣∣∣ < c.

It is easy to see that all the required properties of h are preserved. This ends the

proof of A(LIF(Rn)) ≥ c.

To see the opposite inequality consider F consisting of all constant functions.

Then for any function h:Rn → R there is an f ∈ F such that h(0) + f(0) = 0.

Therefore h + f /∈ LIF(Rn).

3.2 Hamel functions

In this section we confine ourselves to a proper subclass of linearly independent

functions. More precisely, we consider the class of Hamel functions . Let us recall

that a function f :Rn → R is a Hamel function, f ∈ HF(Rn), if f , considered as a

subset of Rn+1, is a Hamel basis for Rn+1. Clearly, HF(Rn) ⊆ LIF(Rn). A little more

challenging argument, comparing with the case of linearly independent functions,

proves the existence of a Hamel function. We do not present it here since this

observation follows from other results of the current section (e.g., Theorem 3.2.4.)

Fact 3.1.3 states some basic properties of the class LIF(Rn). It is interesting

whether the same statements are true for HF(Rn). Since HF(Rn) ⊆ LIF(Rn) the



CHAPTER 3. CLASSES RELATED TO ADDITIVE PROPERTIES 38

properties (ii) and (iii) hold trivially. A short additional argument shows that (i) is

also true. So we can state

Fact 3.2.1

(i) HF(Rn) + AD(Rn) = HF(Rn).

(ii) If f ∈ HF(Rn) then |f [Rn]| = c.

(iii) If f :Rn → R is continuous on some nonempty open set then f /∈ HF(Rn).

Proof. (i) Let f ∈ HF(Rn) and g ∈ AD(Rn). Based on Fact 3.1.3 (i), f + g is

linearly independent. Thus, we need to show that LinQ(f +g) = Rn+1. Let v ∈ Rn+1

and vx ∈ Rn be a vector of n first coordinates of v. Since f ∈ HF(Rn), there exist

x1, . . . , xn ∈ Rn and p1, . . . , pn ∈ Q such that

v − 〈vx, (f + g)(vx)〉 =
n∑
1

pi〈xi, f(xi)〉.

Note that
∑n

1 pixi = 0, so
∑n

1 pig(xi) = g(
∑n

1 pixi) = g(0) = 0. Consequently,

v =
n∑
1

pi〈xi, (f + g)(xi)〉+ 〈vx, (f + g)(vx)〉.

Hence v ∈ LinQ(f + g).

However, it remains an open problem whether Fact 3.1.3 (iv) still holds if LIF(Rn)

is replaced by HF(Rn).

Problem 3.2.2 HF(Rn) ∩ CC(Rn) 6= ∅?

But it turns out that the statement of the last part of Fact 3.1.3 is false for the

class HF(Rn).
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Fact 3.2.3 A(HF(Rn)) ≤ ω for every n ∈ ω.

Proof. For each q ∈ Q and each open ball B with rational center and radius

(rational ball), let us define a function fB
q :Rn → R by fB

q = qχB. We claim that

for every function f :Rn → R there exist a q ∈ Q and a rational ball B such that

f + fB
q /∈ HF(Rn). To see this, first note that we may assume that f = f + fRn

0 ∈
HF(Rn). Thus, 〈0, 1〉 ∈ LinQ(f). Consequently, there exist x1, . . . , xk ∈ Rn and

p1, . . . , pk ∈ Q satisfying
k∑

i=1

pi〈xi, f(xi)〉 = 〈0, 1〉.

Without loss of generality we may assume that p1 6= 0. Now let q = −1
p1

and B

be a rational ball containing x1 but not x2, . . . , xk. It follows easily that f + fB
q is

not linearly independent over Q. Indeed,

k∑
i=1

pi〈xi, f(xi) + fB
q (xi)〉 =

k∑
i=1

pi〈xi, f(xi)〉+
k∑

i=1

pi〈0, fB
q (xi)〉 =

〈0, 1〉+ p1〈0, q〉 = 〈0, 1〉 − 〈0, 1〉 = 0.

Notice here that A(LIF) = c (Fact 3.1.3 (v)) implies in particular, that every

function from RR can be written as the algebraic sum of two linearly independent

functions. In other words LIF + LIF = RR. Since we just proved that A(HF) ≤ ω,

it would be very interesting to determine whether HF + HF = RR. The following

theorem is the main result of this chapter.
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Theorem 3.2.4. Every real function f ∈ RR can be represented as a sum of two

Hamel functions. In other words, RR = HF + HF.

Observe that the above theorem and Proposition 1.2.1 (3) & (5) imply that

A(HF) ≥ 3.

Before proving the theorem we introduce some definitions and show auxiliary

results. For f ∈ RR, x ∈ R, and 0 < n < ω let

LC(f, n, x) =

{
n∑
1

pif(xi): pj ∈ Q, xj ∈ R, j = 1, . . . , n,

n∑
1

pixi = x

}
.

When x = 0 we simply write LC(f, n). We also use LC(f) to denote
⋃

0<n<ω LC(f, n).

Observe that LC(f) is a linear subspace of R over Q, that is, LC(f) = LinQ(LC(f)).

This is so because LC(f) = LinQ(f) ∩ ({0} × R).

The sets LC(f) will play an important role in the proof of Theorem 3.2.4. Thus,

we will investigate properties of these sets.

Property 3.2.5 LC(f, n) ⊆ LC(f, 3)+LC(f, n−1) for every f ∈ RR and 3 ≤ n < ω.

Proof. Let y ∈ LC(f, n). So y =
∑n

1 pif(xi) for some x1, . . . , xn ∈ R and

p1, . . . , pn ∈ Q satisfying
∑n

1 pixi = 0. Define x′ = p1x1 + p2x2, q = 1, and r = −1.

Observe that

p1x1 + p2x2 + rx′ = qx′ + p3x3 + . . . + pnxn = 0.

Thus, p1f(x1) + p2f(x2) + rf(x′) ∈ LC(f, 3) and qf(x′) + p3f(x3) + . . . + pnf(xn) ∈
LC(f, n−1). Since y = p1f(x1)+p2f(x2)+ rf(x′)+ qf(x′)+p3f(x3)+ . . .+pnf(xn)

we conclude that y ∈ LC(f, 3) + LC(f, n− 1).
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Notice that Property 3.2.5 implies that

if |LC(f)| = c then m0 = min{n ∈ ω: |LC(f, n)| = c} ≤ 3. (3.2)

Next we show another property which is important for the proof of Theorem 3.2.4.

Note that if c is regular (i.e., cf(c) = c), then the set Z from part (a) can be taken

as a singleton.

Property 3.2.6 Assume that |LC(f)| = c. Then at least one of the following two

cases hold.

(a) There exists a set Z ∈ [R]<c such that
∣∣⋃

z∈Z LC(f, 2, z)
∣∣ = c.

(b) For all X, Y ∈ [R]<c there exist q1, q2, q3 ∈ Q \ {0} and pairwise linearly

independent x1, x2, x3 ∈ R such that
∑3

1 qif(xi) /∈ Y ,
∑3

1 qixi = 0, and

LinQ(x1, x2, x3) ∩ LinQ(X) = {0}.

Proof. Notice first that if |LC(f, 2)| = c then case (a) holds with Z = {0}. Hence,

using (3.2), we may assume that

|LC(f, 2)| < c and |LC(f, 3)| = c. (3.3)

Based on the above assumption and the definition of the set LC(f, 3), we conclude

that there exist continuum many triples 〈x1, x2, x3〉 ∈ R3 and 〈p1, p2, p3〉 ∈ (Q\{0})3

such that
∑3

1 pixi = 0 and
∑3

1 pif(xi) are all different. Thus, an easy cardinal

argument implies the existence of a sequence 〈〈xξ
1, x

ξ
2, x

ξ
3〉 ∈ R3: ξ < c〉 and some

nonzero rationals q1, q2, q3 with the property that q1x
ξ
1 + q2x

ξ
2 + q3x

ξ
3 = 0 for every

ξ < c, and all q1f(xξ
1) + q2f(xξ

2) + q3f(xξ
3) are different.
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Observe that, if dim({xξ
1, x

ξ
2, x

ξ
3}) = 1 for some ξ then LinQ(xξ

1, x
ξ
2, x

ξ
3) = LinQ(xξ

i )

for some i ∈ {1, 2, 3}. Say i=1. So there is an s ∈ Q such that sq1x
ξ
1 + q2x

ξ
2 = 0.

Combining this with the equality q1x
ξ
1+q2x

ξ
2+q3x

ξ
3 = 0 we obtain that sq1x

ξ
1+q2x

ξ
2 =

(1− s)q1x
ξ
1 + q3x

ξ
3 = 0. Consequently,

[sq1f(xξ
1) + q2f(xξ

2)], [(1− s)q1f(xξ
1) + q3f(xξ

3)] ∈ LC(f, 2)

and

q1f(xξ
1) + q2f(xξ

2) + q3f(xξ
3) =

sq1f(xξ
1) + q2f(xξ

2) + (1− s)q1f(xξ
1) + q3f(xξ

3) ∈ LC(f, 2) + LC(f, 2).

So if dim({xξ
1, x

ξ
2, x

ξ
3}) = 1 for continuum many ξ then |LC(f, 2)| = c. This contra-

dicts (3.3). Thus, we may assume that dim({xξ
1, x

ξ
2, x

ξ
3}) = 2 for all ξ < c.

Now choose X, Y ∈ [R]<c. Notice that

(•) if LinQ(xξ
1, x

ξ
2, x

ξ
3) ∩ LinQ(X) 6= {0} and Z = LinQ(X) then

q1f(xξ
1) + q2f(xξ

2) + q3f(xξ
3) ∈

⋃
z∈Z

LC(f, 2, z) +
⋃
z∈Z

LC(f, 2, z).

Indeed, if LinQ(xξ
1, x

ξ
2, x

ξ
3) ∩LinQ(X) 6= {0} then there exist a, b, c ∈ Q such

that axξ
1 + bxξ

2 + cxξ
3 ∈ LinQ(X) \ {0}. At least one of the numbers a, b, c is not

equal to zero because axξ
1 + bxξ

2 + cxξ
3 6= 0. Without loss of generality we may

suppose that c 6= 0 and consequently c = q3 (multiply the above equation by q3

c
.)

Then, by subtracting axξ
1 + bxξ

2 + q3x
ξ
3 from q1x

ξ
1 + q2x

ξ
2 + q3x

ξ
3 = 0, we obtain that

(q1 − a)xξ
1 + (q2 − b)xξ

2 ∈ LinQ(X) \ {0}. So at least one of (q1 − a), (q2 − b) is not

0. We may assume that (q2 − b) 6= 0. (If (q1 − b) 6= 0 then the following argument
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works analogously.) Now multiply (q1 − a)xξ
1 + (q2 − b)xξ

2 by q2

q2−b
. We get that

rq1x
ξ
1 + q2x

ξ
2 ∈ LinQ(X) and consequently (1− r)q1x

ξ
1 + q3x

ξ
3 = [q1x

ξ
1 + q2x

ξ
2 + q3x

ξ
3]−

[rq1x
ξ
1 + q2x

ξ
2] = −[rq1x

ξ
1 + q2x

ξ
2] ∈ LinQ(X), for some r ∈ Q. Hence

[rq1f(xξ
1) + q2f(xξ

2)], [(1− r)q1f(xξ
1) + q3f(xξ

3)] ∈
⋃
z∈Z

LC(f, 2, z).

Now the claim (•) follows from

q1f(xξ
1) + q2f(xξ

2) + q3f(xξ
3) = rq1f(xξ

1) + q2f(xξ
2) + (1− r)q1f(xξ

1) + q3f(xξ
3)

∈
⋃
z∈Z

LC(f, 2, z) +
⋃
z∈Z

LC(f, 2, z).

From (•) we see that if LinQ(xξ
1, x

ξ
2, x

ξ
3)∩LinQ(X) 6= {0} holds for c-many ξ then the

set Z satisfies the condition |⋃z∈Z LC(f, 2, z)| = c. Obviously Z ∈ [R]<c. Thus, case

(a) holds.

Summarizing the above discussion, we just need to consider a situation when

dim({xξ
1, x

ξ
2, x

ξ
3}) = 2 and LinQ(xξ

1, x
ξ
2, x

ξ
3) ∩ LinQ(X) = {0} for all ξ. Recall that

q1x
ξ
1 + q2x

ξ
2 + q3x

ξ
3 = 0, where q1, q2, q3 ∈ Q \ {0}. If two of xξ

1, x
ξ
2, x

ξ
3 were dependent

over Q then we would have dim({xξ
1, x

ξ
2, x

ξ
3}) ≤ 1. Thus, xξ

1, x
ξ
2, x

ξ
3 are pairwise

independent. Now it is easy to see that case (b) holds.

Lemma 3.2.7 Let X ∈ [R]<c, x /∈ X, and y ∈ R. Suppose also that h, g: X → R are

functions linearly independent over Q. Then there exist extensions h′, g′ of h and g

onto X∪{x} such that h′ and g′ are linearly independent over Q and h′(x)+g′(x) = y.

Proof. Choose h′(x) ∈ R \ LinQ(h[X] ∪ g[X] ∪ {y}). This choice is possible since

|LinQ(h[X] ∪ g[X] ∪ {y})| < c. Then define g′(x) = y − h′(x). It is easy to see that

h′ = h ∪ {〈x, h′(x)〉} and g′ = g ∪ {〈x, g′(x)〉} are the desired extensions.
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Proof of Theorem 3.2.4. Let us start with fixing a function f ∈ RR and enu-

merations {xξ: ξ < c}, {vξ: ξ < c} of R and {0} × R, respectively. We will construct

functions h, g:R→ R which are linearly independent over Q and satisfy the property

that h + g = f and {0} × R ⊆ LinQ(h) ∩ LinQ(g).

First, let us argue that this is enough to prove the theorem. What we have to

show is that LinQ(h) = LinQ(g) = R2. To see LinQ(h) = R2 note that

∀x ∈ Rn ∀z ∈ R 〈x, z〉 = 〈x, h(x)〉+ 〈0, z − h(x)〉 ∈ LinQ(h) + LinQ(h) = LinQ(h).

By the same argument LinQ(g) = R2.

To construct the desired functions h and g, we consider three cases. In the first

case we assume that |LC(f)| < c. If the latter fails, that is |LC(f)| = c, then either

part (a) (Case 2) or part (b) (Case 3) of Property 3.2.6 holds.

Case 1: |LC(f)| = κ < c.

Let c ∈ LC(f) and A ⊆ R be a linearly independent set overQ such that |LinQ(A)|
= |LC(f)| and f(−a) + f(a) ≡ c = const for all a ∈ A. Such a set can be found

since |LC(f)| < c and f(x) + f(−x) ∈ LC(f) for every x ∈ R. Put B = (−A) ∪ A.

First, we will construct functions h, g: B → R linearly independent over Q for

which h + g ⊆ f and

{0} × LC(f) ⊆ LinQ(h) ∩ ({0} × R) = LinQ(g) ∩ ({0} × R). (3.4)

To accomplish this let us fix enumerations {aξ: ξ < κ} of A and {mξ: ξ < κ} of a

linear basis of LC(f) over Q. We may assume that m0 = c if c 6= 0. The construction

of h and g is by induction. At every step α < κ we will define h and g on {−aα, aα},
assuring that
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(a) h|Aα, g|Aα are linearly independent and (h + g)|Aα ⊆ f ,

(b) 〈0, mα〉 ∈ LinQ(h|Aα) ∩ ({0} × R) = LinQ(g|Aα) ∩ ({0} × R),

where Aα = {iaξ: ξ ≤ α, i = −1, 1}.
For α = 0 and x = ±a0 put h(x) = 1

4
m0 and g(x) = f(x) − h(x). Observe

that g(−a0) + g(a0) = [f(−a0) + f(a0)] − [h(−a0) + h(a0)] ∈ {−1
2
m0,

1
2
m0}. This

holds because f(−a0) + f(a0) = c and m0 = c if c 6= 0. Thus 〈0, c〉, 〈0,m0〉 ∈
LinQ(h|A0) ∩ LinQ(g|A0). It is easily seen that h|A0 and g|A0 satisfy (a) and (b).

Now suppose that h and g are defined on A<α =
⋃

ξ<α Aξ (α < κ) and they

satisfy the conditions (a) and (b) for all ξ < α. We will extend h and g onto Aα

preserving the desired properties.

We may assume that 〈0,mα〉 6∈ LinQ(h|A<α)∪LinQ(g|A<α). (Otherwise we could

extend h and g using Lemma 3.2.7 preserving the condition (a).) Put h(x) = 1
2
mα

and g(x) = f(x) − h(x) for x ∈ {−aα, aα}. We claim that (a) and (b) are satisfied.

Obviously, (h+g)|Aα ⊆ f . To see the linear independence of h|Aα and g|Aα first note

that, based on the inductive assumption, h|A<α and g|A<α are linearly independent.

Next suppose that

p〈 − aα, h(−aα)〉+ q〈aα, h(aα)〉 = v for some p, q ∈ Q and v ∈ LinQ(h|A<α).

Since aα /∈ LinQ(A<α) we conclude that p = q. Therefore we have

p〈 − aα, h(−aα)〉+ q〈aα, h(aα)〉 = p〈0, h(−aα) + h(aα)〉 = p〈0,mα〉 = v.

But we assumed that 〈0,mα〉 6∈ LinQ(h|A<α) ∪ LinQ(g|A<α), so p = 0 and v = 0.

This shows linear independence of h|Aα. Very similar argument works for g|Aα: just
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notice that g(−aα) + g(aα) = [f(−aα) + f(aα)] − [h(−aα) + h(aα)] = c − mα and

recall that 〈0, c〉 ∈ LinQ(g|A0) ⊆ LinQ(g|A<α).

Now we show that (b) is also satisfied. From what has already been proved, we

conclude that 〈0,mα〉 ∈ LinQ(h|Aα) ∪ LinQ(g|Aα).

Thus, what remains to prove is the equality part of (b). (The following argument

is also needed in the case when Lemma 3.2.7 was used to define h and g on {−aα, aα}.)
It follows from the fact that 〈0, y〉 ∈ LinQ(h|Aα) provided there exist pi ∈ Q and

ai ∈ Aα, i ≤ n such that

〈0, y〉 =
∑n

1 pi[〈 − ai, h(−ai)〉+ 〈ai, h(ai)〉]

=
n∑
1

pi〈0, h(−ai) + h(ai)〉

=
n∑
1

pi〈0, f(−ai) + f(ai)〉 − pi〈0, g(−ai) + g(ai)〉

=
n∑
1

pi〈0, c〉 −
n∑
1

pi[〈 − ai, g(−ai)〉+ 〈ai, g(ai)〉]

∈ LinQ(g|Aα).

This completes the inductive definition of h and g. Note that (3.4) implies that any

extensions h′, g′ of h and g, with h′ + g′ ⊆ f , satisfy also

{0} × LC(f) ⊆ LinQ(h′) ∩ ({0} × R) = LinQ(g′) ∩ ({0} × R). (3.5)

To see this choose 〈0, y〉 ∈ LinQ(h′)∩({0}×R). So for some pi ∈ Q and xi ∈ R we have

〈0, y〉 =
∑n

1 pi〈xi, h
′(xi)〉 =

∑n
1 pi〈xi, f(xi)〉−

∑n
1 pi〈xi, g

′(xi)〉 ∈ LinQ(g′)∩({0}×R).

The latter holds because
∑n

1 pixi = 0 and consequently
∑n

1 pif(xi) ∈ LC(f). This

ends the proof of (3.5).
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Next we extend h and g onto R = {xξ: ξ < c}, preserving the linear independence

and the property that at the step ξ of the inductive definition we assure that xξ ∈
dom(hξ) = dom(gξ) and vξ ∈ {0} × LinQ(hξ) = {0} × LinQ(gξ), where hξ and gξ

denote the extensions obtained in the step ξ.

Let β < c. Assume that vβ /∈ {0}×LinQ(
⋃

ξ<β hξ) = {0}×LinQ(
⋃

ξ<β gξ). Choose

an a ∈ R \ LinQ(dom(
⋃

ξ<β hξ)) and define h(x) in such a way that 〈0, h(x)〉 = 1
2
vβ

for x ∈ {−a, a}. Put also g(x) = f(x) − h(x). Since f(−a) + f(a) ∈ LC(f), (3.4)

implies that vβ ∈ LinQ(h) ∩ LinQ(g). What remains to show is that h, g are still

linearly independent. But this follows from (3.5) and almost the same argument

which is used to show linear independence of h|Aα and g|Aα in the previous part of

the proof. (Replace aα, h|Aα, and g|Aα by a,
⋃

ξ<β hξ, and
⋃

ξ<β gξ, respectively.)

To finish the step β of the inductive definition we need to make sure that h and g

are defined at xβ. If xβ /∈ dom(h) = dom(g) then we can use Lemma 3.2.7 to define

these functions at xβ, preserving all the required properties.

This ends the construction in Case 1.

Case 2: Property 3.2.6 (a) holds.

Let Z ∈ [R]<c be a set satisfying

∣∣∣∣∣
⋃
z∈Z

LC(f, 2, z)

∣∣∣∣∣ = c.

We start with defining functions h, g: Z → R which are linearly independent over Q

and whose sum is contained in f (i.e., h + g ⊆ f .) It can be easily done by using

Lemma 3.2.7.

We will extend h and g onto R by induction. Let β < c. Assume that h and

g are linearly independent, h + g ⊆ f , {xξ: ξ < β} ⊆ Dβ = dom(h) = dom(g),
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{vξ: ξ < β} ⊆ LinQ(h) ∩ LinQ(g), and vβ /∈ LinQ(h). The property of the set Z

implies the existence of a z ∈ Z satisfying |LC(f, 2, z)| > max(|h|, ω) = max(|g|, ω).

Thus, an easy cardinal argument shows that we can find z1, z2 ∈ R \ LinQ(Dβ) and

p ∈ Q \ {0} which satisfy

z1 + pz2 = z and 〈z, f(z1) + pf(z2)〉 /∈ LinQ(g ∪ {〈0, h(z)〉, vβ}). (3.6)

Define the values of h at z1 and z2 so that

〈z1, h(z1)〉+ p〈z2, h(z2)〉 = 〈z, h(z1) + ph(z2)〉 = vβ + 〈z, h(z)〉.

Observe that then vβ = [vβ + 〈z, h(z)〉]− 〈z, h(z)〉 ∈ LinQ(h).

Now we argue that h and g still linearly independent. To see linear independence

of h suppose that for some q, r ∈ Q (not both equal 0) we have

q〈z1, h(z1)〉+ r〈z2, h(z2)〉 = 〈qz1 + rz2, qh(z1) + rh(z2)〉 ∈ LinQ(h|Dβ).

Since z1, z2 /∈ LinQ(Dβ) and z1+pz2 = z ∈ Z ⊆ LinQ(Dβ) we conclude that 〈q, r〉 and

〈1, p〉 are linearly dependent. So we may assume that 〈q, r〉 = 〈1, p〉. Consequently,

vβ + 〈z, h(z)〉 = 〈z, h(z1) + ph(z2)〉 ∈ LinQ(h|Dβ). This contradicts the assumption

vβ /∈ LinQ(h|Dβ). Hence, h is linearly independent.

Based on the above argument, we see that linear independence of g will follow

from 〈z, g(z1) + pg(z2)〉 /∈ LinQ(g|Dβ). But this holds since (3.6) imply

〈z, g(z1) + pg(z2)〉 =

〈z, f(z1) + pf(z2)− [h(z1) + ph(z2)]〉 =

〈z, f(z1) + pf(z2)〉 − 〈0, h(z)〉 − vβ /∈ LinQ(g|Dβ).
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To assure that vβ ∈ LinQ(g) we repeat the same procedure as above for the function

g. Finally, if xβ /∈ dom(h) = dom(g) then we use Lemma 3.2.7 to define the functions

at xβ.

This ends the construction in Case 2.

Case 3: Property 3.2.6 (b) holds.

The inductive construction of functions h and g is somewhat similar to the one

from the previous case. So assume that β < c and the construction has been carried

out for all ξ < β. If vβ /∈ LinQ(h) then let X = dom(h) = dom(g) and Y ∈ [R]<c

be such a set that LinQ(g ∪ {vβ}) ⊆ R × Y . By Property 3.2.6 (b), there exist

p1, p2, p3 ∈ Q \ {0} and pairwise independent x1, x2, x3 ∈ R such that
∑3

1 pixi = 0,

LinQ(x1, x2, x3) ∩ LinQ(X) = {0}, and
∑3

1 pif(xi) /∈ Y .

We extend h and g onto {x1, x2, x3}. Choose h(x1), h(x2), h(x3) ∈ R in such a

way that
3∑
1

pi〈xi, h(xi)〉 =

〈
0,

3∑
1

pih(xi)

〉
= vβ.

Then put g(xi) = f(xi) − h(xi) for i ≤ 3. Obviously vβ ∈ LinQ(h) and h + g ⊆ f .

We claim that linear independence of h and g is also preserved.

To show this claim notice first, that if
∑3

1 p′ixi ∈ LinQ(X) for some p′1, p
′
2, p

′
3 ∈ Q

then
∑3

1 p′ixi = 0. Pairwise independence of x1, x2, x3 implies that
∑3

1 p′ixi = 0 holds

only for 〈p′1, p′2, p′3〉 ∈ LinQ(〈p1, p2, p3〉). Thus, our claim holds if
∑3

1 pi〈xi, h(xi)〉 /∈
LinQ(h|X) and

∑3
1 pi〈xi, g(xi)〉 /∈ LinQ(g|X). But these two conditions follow from

• ∑3
1 pi〈xi, h(xi)〉 = vβ /∈ LinQ(h|X) and

• ∑3
1 pi〈xi, g(xi)〉 =

∑3
1 pi〈xi, f(xi)− h(xi)〉 = 〈0,∑3

1 pif(xi)〉 − vβ /∈ LinQ(g|X)

(“/∈” part holds because LinQ((g|X) ∪ {vβ}) ⊆ R× Y and
∑3

1 pif(xi) /∈ Y .)
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To assure that vβ ∈ LinQ(g) we repeat the same steps as above for the function

g and then, if necessary, define h and g at xβ using Lemma 3.2.7.

This ends the construction in Case 3.



Chapter 4

Generalized continuity versus
additivity

4.1 Introduction

In this chapter we investigate the function Add for pairs of classes that are not

considered in the previous part of this work. More precisely, in Section 4.2 we

describe Add(F1,F2) in the case when both F1 and F2 are Darboux-like. Section 4.3

deals with the situation when one family is Darboux-like and the other one is the

family of additive or Hamel functions.

Before we proceed to the next sections we recall some definitions and cite some

theorems. Let h ∈ Ext. We say that a set G ⊂ R is h-negligible provided f ∈ Ext

for every function f :R→ R for which f = h on a set R \G. For a cardinal number

κ ≤ c, a function f :R→ R is called κ-strongly Darboux if f−1(y) is κ-dense for every

y ∈ R. If κ = ω then we simply say that f is strongly Darboux. We denote the

family of all κ-strongly Darboux functions by D(κ). It is obvious from the definition

that

D(λ) ⊆ D(κ) for all cardinals κ ≤ λ ≤ c.

51
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We also introduce the family D(P) of perfectly Darboux functions as the class of all

functions f :R→ R such that Q∩f−1(y) 6= ∅ for every perfect set Q ⊆ R and y ∈ R.

In other words, a function f is perfectly Darboux if f−1(y) is a Bernstein set for

every y ∈ R. Notice that D(P) ⊆ D(κ) for every κ ≤ c.

The following theorem is proved in [5].

Theorem 4.1.1. A(AC) = A(D) = A(D(ω1)).

Using a similar technique as in the case of the above theorem, we will prove the

following proposition.

Proposition 4.1.2 Let F ∈ {AD, HF, Ext}. Then Add(F , AC) = Add(F , D).

The proof of Proposition 4.1.2 requires the use of other lemmas and a proposition.

Lemma 4.1.3 Let X be any set of cardinality continuum and assume that F ⊆ RX

satisfies the condition |F | < A(D). There exists a g: X → R such that (g+f)−1(y) 6=
∅ for each y ∈ R.

Proof. Let b:R→ X be a bijection. By Theorem 4.1.1 and monotonicity of A we

have that A(D) = A(D(ω)). Hence we can find a g′:R → R satisfying the property

that g′ + (f ◦ b) ∈ D(ω) for each f ∈ F . Put g = g′ ◦ b−1. Clearly, g is the desired

function.

Lemma 4.1.4 Let X ⊆ R be a set linearly independent over Q. Then every function

f : X → R can be extended onto R to a Hamel function.
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Proof. Let g ∈ RR be a Hamel function. Define g′:R → R to be an additive

extension of f−(g|X). Notice that g+g′ ∈ HF by Fact 3.2.1 (i). Since (g+g′)|X = f

we conclude that g + g′ is a Hamel function extending f .

Proposition 4.1.5 A(D) = A(D(P)).

Proof. Fix a family F ⊆ RR of cardinality less than A(D). Next, let {Bξ: ξ < c}
and {Pξ: ξ < c} be a family of pairwise disjoint Bernstein sets and an enumeration

of all perfect subsets of R, respectively. We define the sequence 〈Aξ: ξ < c〉 by

Aξ = Bξ ∩ Pξ. Obviously, the sets Aξ are pairwise disjoint and each one of them has

cardinality c. Applying Lemma 4.1.3 for every ξ < c separately, we get a sequence

of functions 〈gξ: Aξ → R | ξ < c〉 such that for every ξ < c the following holds

∀f ∈ F ∀y ∈ R (gξ + f)−1(y) 6= ∅.

Now, if g ∈ RR is any extension of
⋃

ξ<c gξ onto R then g + F ⊆ D(P).

Proof of Proposition 4.1.2. First we show that

(∗∗) Add(F ,F0) > c for F0 ∈ {AC, D(ω1)}.

Let us fix a family F ⊆ RR with cardinality c. To prove the case F ∈ {AD, HF}
consider a c-dense Hamel basis H. There exists a partition {Bf : f ∈ F} of H into

c-dense sets. Since the projection of every blocking set in R2 contains an interval, we

can find, for every f ∈ F , a partial function gf : Bf → R such that gf + f intersects

every blocking set in at least ω1 points. Thus every extension of gf + f onto R is

almost continuous and ω1-strongly Darboux. If g ∈ RR is any function containing
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⋃
f∈F gf then g + F ⊆ AC ∩D(ω1). In particular, we can choose g to be an additive

or Hamel function (see Lemma 4.1.4.) Hence Add(F ,F0) > c for F0 ∈ {AC, D(ω1)}.
Now consider the case F = Ext. If F0 = AC then we have the inequality

Add(Ext, AC) ≥ Add(Ext, Ext) = A(Ext) = c+ > c which follows from Propo-

sition 1.2.1 (2) & (5). Now, let us focus on the case F0 = D(ω1). Let Q ⊆ R

be a c-dense meager Fσ-set. Then, according to [4, Proposition 4.3], there exists

an extendable function f :R → R such that the set R \ Q is f -negligible. Since

|F | < A(D) = A(D(P)), there exists a function h ∈ RR such that h+F ⊆ D(P). No-

tice here that any perfectly Darboux function modified on a meager set is in D(ω1).

This implies that the function g = f |Q ∪ h|(R \Q) shifts F into D(ω1) ⊆ D. Since

Q ⊆ [f = g] we have that g ∈ Ext. Observe also that F could be any family with

|F | < A(D) = A(D(P)). So we actually proved that

Add(Ext, D) ≥ Add(Ext, D(ω1)) ≥ A(D).

This finishes the proof of (∗∗).
Now the argument follows the schema of the proof of Theorem 4.1.1.1 We start

with proving the equality Add(F , D) = Add(F , D(ω1)). Obviously, Add(F , D) ≥
Add(F , D(ω1)). To justify the other inequality let κ = Add(F , D(ω1)). By (∗∗) we

get that κ > c. We will show that κ ≥ Add(F , D).

Consider a family G ⊆ RR of cardinality κ witnessing κ = Add(F , D(ω1)). We

define a new family G∗ = {h ∈ RR: ∃g ∈ G h =∗ g}, where h =∗ f if and only

if |{x: h(x) 6= f(x)}| ≤ ω. Notice here that |G∗| = κ. This is so because κ > c

and for every f ∈ RR the set {h ∈ RR: h =∗ f} has cardinality c. We claim that

1For reader’s convenience, we include this slight modification of the proof from [5] in this paper.
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G∗ witnesses κ ≥ Add(F , D). Indeed, let f ∈ F . Then, by the choice of G, there

exists a g ∈ G satisfying the following f + g /∈ D(ω1). This implies the existence

of a non-trivial closed interval I and y ∈ R for which |I ∩ (f + g)−1(y)| ≤ ω. By

modification of g on a countable set, we get a function g∗ ∈ G∗ with the property

that (f + g∗)[I] ∩ (−∞, y) 6= ∅ 6= (f + g∗)[I] ∩ (y,∞) and y /∈ (f + g∗)[I]. Therefore

(f + g∗) /∈ D. This ends the proof of the equality Add(F , D) = Add(F , D(ω1)).

What remains to show is that Add(F , AC) = Add(F , D(ω1)). The inequal-

ity Add(F , AC) ≤ Add(F , D) = Add(F , D(ω1)) is obvious, so we just need to

prove that Add(F , AC) ≥ Add(F , D(ω1)). This time consider K ⊆ RR witness-

ing Add(F , AC) = λ. We put K∗ = {g − hB: g ∈ K and B is a blocking set}, where

hB ∈ RR is a function such that hB|dom(B) ⊆ B. Clearly |K∗| = λ because there

are only continuum many blocking sets and λ > c. Let f ∈ F . Then, by the choice of

K, there exist a g ∈ K and a blocking set B such that (f +g)∩B = ∅. In particular,

[f + (g − hB)] ∩ (B − hB) = [(f + g) ∩B]− hB = ∅,

where we define Z − hB = {(x, y − hB(x)): (x, y) ∈ Z} for any Z ⊆ R2. From the

definition of hB we have dom(B) × {0} ⊆ (B − hB). Thus f + (g − hB) has an

empty intersection with dom(B) × {0}. This means that f + (g − hB) 6∈ D(ω1),

since dom(B) contains a non-trivial interval. But g − hB ∈ K∗, so K∗ witnesses

λ ≥ Add(F , D(ω1)). This finishes the proof of Add(F , AC) = Add(F , D(ω1)) as well

as whole Proposition 4.1.2.
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4.2 Relations among Darboux-like families

The following result gives the values of the function Add for pairs of Darboux-like

classes.

Theorem 4.2.1. If F ,G ∈ {Ext, AC, Conn, D, PC} then Add(F ,G) = A(G) and

Add(C,F) = Add(F , C) = 1.

Proof. We start with proving Add(C,F) = Add(F , C) = 1. Notice that it

is enough to show the latter for F = PC since Add(C,F) ≤ Add(C, PC) and

Add(F , C) ≤ Add(PC, C) by Proposition 1.2.1 (1) & (2). To see that Add(C, PC) =

Add(PC, C) = 1 observe that C + PC = PC. Therefore, if f 6∈ PC then there is no

g ∈ C such that g + f ∈ PC.

Now we prove Add(F ,G) = A(G). Let us first assume that G = Ext. The desired

conclusion follows from the inequality

A(Ext) = Add(RR, Ext) ≥ Add(F , Ext) ≥ Add(Ext, Ext) = A(Ext) = c+,

where the equality part is implied by Proposition 1.2.1 (5).

Next suppose that G ∈ {AC, Conn, D}. By the monotonicity of Add we just

need to show that Add(Ext,G) = A(G). Recall that A(AC) = A(Conn) = A(D).

and also note that, by Proposition 4.1.2 and Proposition 1.2.1 (2), Add(Ext, AC) =

Add(Ext, Conn) = Add(Ext, D). The desired equality follows from

A(AC) = A(Conn) = A(D) ≥ Add(Ext, D) ≥ A(D),

where the last inequality is shown in the proof of (∗∗) in Proposition 4.1.2.
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What remains to prove is Add(F ,G) = A(G) for G = PC. Again, by the mono-

tonicity of Add, it suffices to show the latter for F = Ext. Let Q ⊆ R and f :R→ R

be as in the proof of (∗∗) Proposition 4.1.2, i.e., Q is c-dense meager Fσ-set and

f is an extendable function such that R \ Q is f -negligible. Fix a family F ⊆ RR

of cardinality less than 2c. Now, a small modification in the proof of the equality

Add(SZ, PC) = 2c in Section 2.3 (the sets B〈I,p,m〉 can be chosen to be subsets of

R \Q), gives us a function g:R→ R which shifts F into PC and which agrees with

f on the set containing Q. In particular, g is an extendable function.

4.3 Relations between Darboux-like and additive

or Hamel functions

In this section the cardinal function Add is investigated for pairs of classes such that

one is Darboux-like and the other is either the class AD of all additive functions or

the class HF of all Hamel functions.

Before formulating the appropriate theorem we recall what is known about values

of the cardinal function A. (See Sections 1.2 and 3.2.)

3 ≤ A(HF) ≤ ω < c+ = A(Ext) ≤ A(AC) = A(Conn) = A(D) ≤ A(PC) = 2c.

Theorem 4.3.1. Let F ∈ {AD, HF}. The following holds.

(i) Add(F ,G) = A(G) and Add(G,F) = A(F) for G ∈ {Ext, AC, Conn, D, PC}.
In particular, Add(G, AD) = A(AD) = 2. In addition, we also have that

Add(C,F) = Add(F , C) = 1 = Add(AD, HF) = Add(HF, AD).

(ii) Add(SZ,F) = A(F) and Add(F , SZ) > c.
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Part (ii) of the theorem gives only a lower bound for the cardinals Add(AD, SZ)

and Add(HF, SZ). It is unknown whether Add(AD, SZ) = Add(HF, SZ) = A(SZ).

Problem 4.3.2 Does Add(F , SZ) equal to A(SZ) for F ∈ {AD, HF}?

Before we proceed to the proof of Theorem 4.3.1 let us comment on how the

class HF of Hamel functions relates to all the other families in terms of inclusion and

intersection. Proposition 1.2.1 (iv) states that if Add(F1,F2) ≥ 2 then F1 ∩F2 6= ∅.
Thus, based on the values of Add given by the above theorem, we conclude that

there exists a Hamel function belonging to each of Ext, AC, Conn, D, PC, or SZ.

From Fact 3.2.3 we obtain HF∩C = ∅. This implies that none of Ext, AC, Conn, D,

or PC is contained in HF. It is obvious that SZ * HF. But neither HF is contained

in SZ. The latter holds because, based on Lemma 4.1.4, there is a Hamel function

which is constant on a set of size c. So what is left to determine is whether HF is

a subset of one of AC, Conn, D, or PC. Since all peripherally continuous functions

contain all the other classes, it is sufficient to find out whether HF ⊆ PC. As one

might expect, the inclusion HF ⊆ PC is not true. An example of a Hamel function

which is not peripherally continuous can be easily constructed by induction.

Example 4.3.3 There exists a Hamel function h:R → R which is not peripherally

continuous.

Proof. See (◦) in the proof of Theorem 4.3.1 (ii).

Before we move to the proof of Theorem 4.3.1 we need one more lemma.

Lemma 4.3.4 Add(F , D) ≥ A(D(P)) for F = AD, HF. In particular, Add(F , D) =

A(D).
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Proof. The proof is done for the case F = AD. The argument for F = HF follows

exactly the same path.

Let P ⊆ R be a perfect set with the property that P ∪{1} is linearly independent

over Q. Observe that for every p, q ∈ Q, p 6∈ {0, 1}, we have (pP + q) ∩ P = ∅.
Now, consider a countable partition {Pn: n < ω} of P into perfect sets. Using this

partition and the above observation we can easily construct a family {P ?
n : n < ω} of

disjoint perfect sets such that
⋃

n<ω P ?
n is independent over Q and for every nontrivial

interval I ⊆ R there is an m < ω such that P ?
m ⊆ I. Note that

⋃
n<ω P ?

n is a c-dense

meager Fσ-set.

To prove the inequality Add(AD, D) ≥ A(D(P)) let us fix a family F ⊆ RR

such that |F | < A(D(P)). There exists a function g ∈ RR satisfying the property

g + F ⊆ D(P). We claim that if g?:R → R is any additive extension of g|⋃n<ω P ?
n

then g? + F ⊆ D. More precisely, for every f ∈ F , g? + f is strongly Darboux.

To see this pick any f ∈ F , y ∈ R, and any interval I. There exists m < ω

such that P ?
m is contained in I. Furthermore, we can find x ∈ P ?

m ⊆ I for which

g?(x) + f(x) = g(x) + f(x) = y. This shows that g? + f is strongly Darboux.

The second statement in the lemma is proved by Proposition 4.1.5 and the in-

equality A(D) ≥ Add(AD, D) ≥ A(D(P)).

Proof of Theorem 4.3.1. (i) We start with showing Add(F ,G) = A(G). Suppose

that G = Ext. Since Add(F , Ext) ≤ A(Ext) = c+ for F ∈ {AD, HF}, it suffices to

show that Add(F , Ext) ≥ c+. So for every F = {fξ: ξ < c} ⊆ RR we need to find a

g ∈ F such that g + F ⊆ Ext.

Let 〈Dξ: ξ < c〉 be a sequence of pairwise disjoint c−dense meager Fσ sets such

that
⋃

ξ<c Dξ is linearly independent over Q. Such a sequence can be constructed
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in a similar way as the c−dense meager Fσ-set in the proof of Lemma 4.3.4. Now,

by [4, Proposition 4.3], for every ξ < c we can find hξ ∈ Ext such that R \ Dξ is

hξ-negligible. Extend the partial function
⋃

ξ<c(hξ − fξ)|Dξ to a function g from F .

It is obvious that such g exists in the case of additive functions. If F = HF than the

existence of g follows from Lemma 4.1.4.

To see that g + fξ ∈ Ext for every ξ, observe that g + fξ = hξ on Dξ. But the set

R \Dξ is hξ-negligible. So each g + fξ is extendable.

The equality Add(F ,G) = A(G) for G ∈ {AC, Conn, D} follows from Proposi-

tions 4.1.2, 1.2.1 (1) and Lemma 4.3.4.

Now assume that G = PC. The proof of this part is similar to the proof of

Theorem 2.1.1 (4). Fix a Hamel basis H which is a Bernstein set. By choosing the

sets B〈I,p,m〉 to be subsets of H, we can obtain, for a given family F of real functions

with cardinality less than 2c, a partial function g′: H → R such that for every f ∈ F ,

g′ + f is dense in R2. Recall that a function with a dense graph is peripherally

continuous. Thus, if g:R → R is an additive or Hamel function extending g′ then

g + F ⊆ PC.

Next we show Add(G,F) = A(F). Let us first assume that F is the family of

additive functions. Observe that A(AD) = 2. This follows from Proposition 1.2.1 (3)

& (5) and obvious equality AD−AD = AD. Next recall that Add(G, AD) ≤ A(AD)

and G − AD = AD − G = G + AD for all G ∈ {Ext, AC, Conn, D, PC}. Thus, by

Proposition 1.2.1 (3) and the equality Add(AD,G) = A(G) which is proved above,

we conclude that G + AD = RR. Consequently, Add(G, AD) = 2 = A(AD).

Now we consider case F = HF. Recall that the class Ext of extendable func-

tions is contained in each of AC, Conn, D, or PC. So, by the monotonicity of Add,
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Add(G, HF) = A(HF) for G ∈ {Ext, AC, Conn, D, PC} will follow from the equality

Add(Ext, HF) = A(HF). Clearly, Add(Ext, HF) ≤ A(HF). Let F ⊆ RR satisfies

the condition that there is an f ∈ RR shifting F into HF (f + F ⊆ HF.) Choose

any c-dense Fσ set D independent over Q. There is a function h: D → R whose

every extension onto R is in Ext (see proof of (ii).) Let g ∈ RR be an additive

function extending h − f . Then we have (g + f)|D = h. So g + f ∈ Ext. Since

f + F ⊆ HF, Fact 3.2.1 (i) implies that (g + f) + F ∈ HF. This completes the proof

of Add(Ext, HF) = A(HF).

What remains to prove is the last part of (i). The equality Add(C, AD) =

Add(AD, C) = 1 is implied by Proposition 1.2.1 (3) and the fact C−AD = AD−C 6=
RR. The characteristic function of a point, say χ{0}, is an example of a function wit-

nessing the above property. Indeed, (χ{0} + C) ∩ AD = ∅ because every additive

function is either continuous or has a dense graph (see [3, Exercise 4, Section 7.3].)

To finish the proof of (i) we show that Add(H, HF) = Add(HF,H) = 1 for

H = AD, C. But this follows easily from Proposition 1.2.1 (4) and H ∩ HF = ∅ (see

Fact 3.2.1 (iii).)

(ii) First we prove that Add(F , SZ) > c. Let us fix a family F = {hξ: ξ < c} ⊆ RR.
We will construct by induction a function g ∈ F satisfying g + F ⊆ SZ. First we

assume that F = AD.

Let H = {xξ: ξ < c} be a Hamel basis H = {xξ: ξ < c}. We will define the

function g on H and then extend it onto R. For a given α < c, we choose

g(xα) /∈
(⋃

q∈Q

⋃

ξ,γ<α

q(fγ − hξ)[LinQ(xβ: β ≤ α)]

)
+ g[LinQ(xβ: β < α)],

where 〈fα : α < c〉 is a sequence of all continuous functions defined on Gδ subsets
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of R. Such a choice is possible because the cardinality of the considered set is less

than c. This choice also assures that g + F ⊆ SZ. To see this observe the following:

[g + hξ = fα] = [g = fα − hξ] ⊆ LinQ(xβ: β ≤ max(α, ξ)) for all α, ξ < c. Thus

|[g + hξ = fα]| ≤ ω max(α, ξ) < c, which proves that g + hξ ∈ SZ.

Now consider the case F = HF and fix an enumeration {xξ: ξ < c} of R. We

will define an increasing sequence of partial functions 〈gξ: ξ < c〉 satisfying for all

β, γ, ξ < c

(a) xξ ∈ dom(gξ), 〈0, xξ〉 ∈ LinQ(gξ), and gξ is linearly independent,

(b) |dom(gξ)| ≤ max(ω, ξ) and [(gξ + hβ) = fγ] ⊆ dom(gmax(β,γ)).

Put g0 = {〈x0, 1〉}. Clearly, g0 satisfies all the required conditions.

Now suppose that α < c, the sequence 〈gξ: ξ < α〉 is already defined, and 〈0, xα〉 /∈
LinQ(

⋃
ξ<α gξ). Choose an x /∈ LinQ(

⋃
ξ<α dom(gξ)). We will define gα as an extension

of
⋃

ξ<α gξ onto {−x, x, xα} ∪
⋃

ξ<α dom(gξ). Let gα(−x) and gα(x) be such that

gα(−x) + gα(x) = xα and

gα(−x), gα(x) /∈
( ⋃

β,γ<α

(fγ − hβ)[{−x, x} ∪
⋃

ξ<α

dom(gξ)]

)
.

We can easily define gα at xα if necessary, preserving the conditions (a) and (b).

This completes the construction of 〈gξ: ξ < c〉.
Put g =

⋃
ξ<c gξ. It is easily seen that g + F ⊆ SZ. Since {0} × R ⊆ LinQ(g) we

also have that R2 ⊆ LinQ(g). By (a) g is linearly independent so g ∈ HF.

Let us notice that g could be constructed in such way that its graph has an

isolated point. This shows, in particular, that

(◦) there is a Hamel function which is not peripherally continuous.
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This is so because if a function f :R→ R is peripherally continuous then for every x

there exist sequences an ↗ x and bn ↘ x such that f(an), f(bn) → f(x).

Next we show that Add(SZ,F) = A(F). To prove this equality for F = HF fix

a G ⊆ RR such that |G| < A(HF). There exists a g ∈ RR with the property that

g + G ⊆ HF. From the inequality Add(AD, SZ) > c, which has been proved, we

conclude that f + g ∈ SZ for some f ∈ AD. But, by Fact 3.2.1 (i), (f + g) + G =

f + (g + G) ⊆ HF. This shows that Add(SZ, HF) ≥ A(HF). The opposite inequality

is obvious.

To see Add(SZ, AD) = A(AD) recall that, based on (i), A(AD) = 2. By the

monotonicity of Add we get that Add(SZ, AD) ≤ A(AD). In the previous part of

this proof we have shown that Add(HF, SZ) > c. Thus, by Proposition 1.2.1 (3) we

obtain Add(SZ, HF) ≥ 2 = A(AD). Consequently, Add(SZ, AD) = A(AD).
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