Composition of Axial Functions of Product of Finite Sets

Krzysztof Płotka
Department of Mathematics
University of Scranton
Scranton, PA 18510, USA
plotkak2@scranton.edu

September 14, 2004

To the memory of my Father

Abstract

We show that every function $f: A \times B \rightarrow A \times B$, where $|A| \leq 3$ and $|B|<\omega$, can be represented as a composition $f_{1} \circ f_{2} \circ f_{3} \circ f_{4}$ of four axial functions, where f_{1} is a vertical function. We also prove that for every finite set A of cardinality at least 3 , there exist a finite set B and a function $f: A \times B \rightarrow A \times B$ such that $f \neq f_{1} \circ f_{2} \circ f_{3} \circ f_{4}$, for any axial functions $f_{1}, f_{2}, f_{3}, f_{4}$, whenever f_{1} is a horizontal function.

A function $f: A \times B \rightarrow A \times B$ is called vertical $(f \in \mathrm{~V})$ if there exist a function $f_{1}: A \times B \rightarrow A$ such that $f(a, b)=\left(f_{1}(a, b), b\right)$. It is called horizontal $(f \in \mathrm{H})$ if $f(a, b)=\left(a, f_{2}(a, b)\right)$ for some function $f_{2}: A \times B \rightarrow B$. If f is horizontal or vertical then we call it axial. A one-to-one function from $A \times B$ onto $A \times B$ is called a permutation of $A \times B$. The family of all functions from $A \times B$ into $A \times B$ is denoted by $(A \times B)^{A \times B}$. If $F_{1}, F_{2}, \ldots, F_{n} \subseteq(A \times B)^{A \times B}$, then we write $F_{1} F_{2} \ldots F_{n}$ to denote $\left\{f_{1} \circ f_{2} \circ \cdots \circ f_{n}: f_{i} \in F_{i}, i=1,2, \ldots, n\right\}$.

AMS Subject Classification (2000): Primary 03E20; Secondary: 08A02.
Key words: axial functions.

It is convenient, especially when the set $A \times B$ is finite, to use matrices to represent functions from $(A \times B)^{A \times B}$. Given a function $f \in(A \times B)^{A \times B}$ and a matrix $M=\left[m_{(a, b)}\right]$ of size $|A| \times|B|$, we define $f[M]=\left[m_{f(a, b)}\right]$. If the elements of the matrix $M=\left[m_{(a, b)}\right]$ are distinct, then the matrix $f[M]$ uniquely determines the function f. We will often identify the elements (a, b) of $A \times B$ and the corresponding entries $m_{(a, b)}$ of the matrix M. Observe also that if $f, g \in(A \times B)^{A \times B}$, then $f[g[M]]=(g \circ f)[M]$. To see this let $M^{\prime}=g[M]$ and $M^{\prime \prime}=f\left[M^{\prime}\right]=f[g[M]]$. For $(a, b) \in A \times B$ we have that $m_{(a, b)}^{\prime \prime}=m_{(c, d)}^{\prime}$ for some $(c, d) \in A \times B$ such that $(c, d)=f(a, b)$. Now, note that $m_{(c, d)}^{\prime}=m_{g(c, d)}$. Hence $m_{(a, b)}^{\prime \prime}=m_{g(c, d)}=m_{g(f(a, b))}=m_{(g \circ f)(a, b)}$.

Banach ($[\mathrm{M}]$, Problem 47) asked whether every permutation function of a cartesian product of two infinite countable sets can be represented as a composition of finitely many axial functions. The question was answered affirmatively by Nosarzewska $[\mathrm{N}]$. Further research on this subject was done by Ehrenfeucht and Grzegorek [EG, G]. They discussed the smallest possible number of axial functions needed. Also, they considered the case when both sets are finite. In particular, they proved the following.

Theorem 1. Let $f, p \in(A \times B)^{A \times B}$ and p be a permutation.
(i) Then $p=p_{1} \circ p_{2} \circ p_{3} \circ p_{4}$, where all p_{i} are axial permutations of $A \times B$.
(ii) If A is finite, then $p=p_{1} \circ p_{2} \circ p_{3}$, where all p_{i} are axial permutations of $A \times B$ and $p_{1} \in \mathrm{~V}$.
(iii) If $A \times B$ is infinite, then $f=f_{1} \circ f_{2} \circ f_{3}$, where all f_{i} are axial functions.
(iv) If $A \times B$ is finite, then f can be represented as $f=f_{1} \circ \cdots \circ f_{6}$, where all f_{i} are axial functions and $f_{1} \in \mathrm{~V}$.

Let us mention here, that Ehrenfeucht and Grzegorek showed also that it is not possible to decrease the numbers 4 in part (i) and 3 in parts (ii) and (iii) of the above theorem. In addition, in part (i) it cannot be specified that $p_{1} \in \mathrm{~V}$. However, it was not proved that 6 in part (iii) is the smallest possible. Later, Szyszkowski $[\mathrm{S}]$ proved that 6 can be decreased to 5 . He also gave an example which showed that 6 cannot be decreased to 3 . In his
example one of the sets has at least 4 elements and the other one at least 5 . Below, we present an example in which both sets have exactly three elements each. It is worthy to mention here that, if one of the sets has at most two elements, then 3 axial functions are enough (see Remark 5).

Example 2 The number 6 in Theorem 1 (iv) cannot be reduced to 3 .
Let $M=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$. Define $f \in(A \times B)^{A \times B}$ by $f[M]=\left[\begin{array}{ccc}i & g & e \\ d & h & b \\ h & a & c\end{array}\right]$.
We will justify why $f \neq f_{1} \circ f_{2} \circ f_{3}$ for any axial functions f_{1}, f_{2}, f_{3} such that $f_{1} \in \mathrm{~V}$ (the case when $f_{1} \in \mathrm{H}$ is analogous). Notice that for the equality $f[M]=\left(f_{1} \circ f_{2} \circ f_{3}\right)[M]=f_{3}\left[f_{2}\left[f_{1}[M]\right]\right]$ to hold, every column of $f[M]$ would have to be contained in a selector from the rows of $f_{1}[M]$. In particular, since the sets $\{i, d, h\}$ and $\{g, h, a\}$ form two columns of $f[M]$, the elements a, d, g would have to appear in different rows of $f_{1}[M]$ than the element h. But this is impossible.

The question, which remains open, is whether every function can be obtained as a composition of four axial functions. We give partial answers to this question. The following holds.

Theorem 3.

(i) If $|A|=3$, then $(A \times B)^{A \times B}=\mathrm{VHVH}$.
(ii) If $|A| \geq 3$, then there exists an integer m_{0} such that $(A \times B)^{A \times B} \neq$ HVHV, whenever $|B| \geq m_{0}$.

Theorem 3 implies the following.

Corollary 4 There exist finite sets A, B and a function $f: A \times B \rightarrow A \times B$ such that $f \in \mathrm{VHVH}$ and $f \notin \mathrm{HVHV}$.

Proof of Theorem 3. (i) First observe that it suffices to prove the result for functions $f: A \times B \rightarrow A \times B$ such that the entries in each row of the matrix $f[M]$ are all distinct, that is, $|f(\{a\} \times B)|=|B|$ for every $a \in A$. This
is so, because for an arbitrary function $f^{\prime}: A \times B \rightarrow A \times B$, there exists a function f of the above type and a horizontal function $h: A \times B \rightarrow A \times B$ such that $f^{\prime}[M]=h[f[M]]=(f \circ h)[M]$. Since the composition of two horizontal functions is a horizontal function, if $f \in \mathrm{VHVH}$, then also $f^{\prime} \in \mathrm{VHVH}$. Hence, let f be a function such that the entries in each row of the matrix $f[M]$ are all distinct. It can be easily proved by induction on $|B|$, that there exists a horizontal permutation $h: A \times B \rightarrow A \times B$ such that there exists a partition of B into three sets B_{1}, B_{2}, B_{3} (some of the sets may be empty) with the following properties:

1. $\left|(f \circ h)\left(A \times\left\{b_{1}\right\}\right)\right|=1$ for every $b_{1} \in B_{1}$,
2. $\left|(f \circ h)\left(A \times\left\{b_{2}\right\}\right)\right|=2$ for every $b_{2} \in B_{2}$,
3. $\left|(f \circ h)^{-1}(\{m\})\right| \leq 2$ for every $m \in(f \circ h)\left(A \times B_{3}\right)$ and $\mid\{m \in(f \circ$ $\left.h)\left(A \times B_{3}\right):\left|(f \circ h)^{-1}(\{m\})\right|=2\right\} \mid \equiv 0 \bmod 3$,
4. if $(f \circ h)(A \times\{b\}) \cap(f \circ h)\left(A \times\left\{b^{\prime}\right\}\right) \neq \emptyset$, then $b, b^{\prime} \in B_{3}$.

For the matrix $h[f[M]]$ this means that each column with index in B_{1} has all the entries equal, each column with index in B_{2} has only two different entries, and the number of entries appearing twice in the part of $h[f[M]]$ corresponding to B_{3} is divisible by 3 . In addition, columns with indices in B_{3} are the only columns which can share entries with other columns.

So, if we can prove that $f \circ h \in \mathrm{VHVH}$, then, since h is a horizontal permutation, we will also prove that $f \in$ VHVH. Hence, without loss of generality, we can assume that f itself satisfies the four above conditions. Now, let us partition the set $(A \times B) \backslash f(A \times B)$ into sets E_{1}, E_{2}, E_{3} such that $\left|E_{1}\right|=2\left|B_{1}\right|$ and $\left|E_{2}\right|=\left|B_{2}\right|$. Next define the partition $\mathcal{P}=\mathcal{P}_{1} \cup \mathcal{P}_{2} \cup$ $\mathcal{P}_{3} \cup \mathcal{P}_{4} \cup \mathcal{P}_{5}$ of $A \times B$ into sets of size 3 as follows.

- $\left\{m_{1}, m_{2}, m_{3}\right\} \in \mathcal{P}_{1}$ if $m_{1} \in f\left(A \times B_{1}\right), m_{2}, m_{3} \in E_{1}$
- $\left\{m_{1}, m_{2}, m_{3}\right\} \in \mathcal{P}_{2}$ if $m_{1}, m_{2} \in f\left(A \times\left\{b_{2}\right\}\right)$ for some $b_{2} \in B_{2}, m_{3} \in E_{2}$
- $\left\{m_{1}, m_{2}, m_{3}\right\} \in \mathcal{P}_{3}$ if $m_{1}, m_{2}, m_{3} \in E_{3}$
- $\left\{m_{1}, m_{2}, m_{3}\right\} \in \mathcal{P}_{4}$ if $m_{i} \in f\left(A \times B_{3}\right),\left|f^{-1}\left(\left\{m_{i}\right\}\right)\right|=2$ for $i=1,2,3$
- $\left\{m_{1}, m_{2}, m_{3}\right\} \in \mathcal{P}_{5}$ if $m_{i} \in f\left(A \times B_{3}\right),\left|f^{-1}\left(\left\{m_{i}\right\}\right)\right|=1$ for $i=1,2,3$

The existence of this partition follows from the conditions 1-4. Note that these conditions also imply that $\left|\mathcal{P}_{3}\right|=\left|\mathcal{P}_{4}\right|$.

Based on Theorem 1 (ii), there exists a vertical permutation $f_{1} \in \mathrm{~V}$ such that for each set $P \in \mathcal{P}$, the elements of P appear in different rows of $f_{1}[M]$ (see the argument in Example 2). Now observe that there exists a horizontal permutation $f_{2} \in \mathrm{H}$ such that the columns of $f_{2}\left[f_{1}[M]\right]$ are the sets of the partition \mathcal{P} and the sets from $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ correspond to columns with indices in $B_{1} \cup B_{2}$. The function f_{2} can be modified, so the elements from the sets in \mathcal{P}_{3} are replaced by the elements from the sets in \mathcal{P}_{4} and the latter appear twice in the matrix $f_{2}\left[f_{1}[M]\right]$. Notice that the parts of matrices $f[M]$ and $f_{2}\left[f_{1}[M]\right]$ corresponding to $A \times B_{3}$ are permutations of each other, so by Theorem 1 (ii) one can be obtained from the other by performing three axial permutations (note that if both sets A and B are finite, then Theorem 1 (ii) with $p_{1} \in \mathrm{~V}$ replaced by $p_{1} \in \mathrm{H}$ also holds). Additionally, the columns in $f_{2}\left[f_{1}[M]\right]$ with indices in $B_{1} \cup B_{2}$ can be made identical to the columns of $f[M]$ by performing one vertical operation. Consequently, we can claim that there exist three axial functions $f_{3} \in \mathrm{H}, f_{4} \in \mathrm{~V}, f_{5} \in \mathrm{H}$ such that $f[M]=f_{5}\left[f_{4}\left[f_{3}\left[f_{2}\left[f_{1}[M]\right]\right]\right]\right]$. Hence $f=f_{1} \circ \cdots \circ f_{5}$. Since $f_{2} \in \mathrm{H}$ and $f_{3} \in \mathrm{H}$, we obtain that $f_{2} \circ f_{3} \in \mathrm{H}$ and finally $f \in \mathrm{VHVH}$.
(ii) Denote $|A|$ by k. Define $n=k(k-1)+1$ and $m_{0}=\left\lceil\frac{k\binom{n}{k}-n}{k-2}\right\rceil$. Let $m \geq m_{0}$ be an integer and M be a $k \times m$ matrix with all entries distinct and such that the first n entries in the first row are $a_{1}, a_{2}, \ldots, a_{n}$.

We define a function $f: A \times B \rightarrow A \times B(|B|=m)$ by defining $f[M]$. The entries from the "bottom" $(k-2)$ rows of M do not appear in $f[M]$. The first $\binom{n}{|A|}=\binom{n}{k}$ columns of $f[M]$ form all k-subsets of $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. The rest $\left(m-\binom{n}{k}\right)$ of the columns of $f[M]$ are formed using all the entries from the first two rows of M except $a_{1}, a_{2}, \ldots, a_{n}$ (some of them may need to appear
more than once). Note that this is possible because the number $(2 m-n)$ of entries in the first two rows of M except $a_{1}, a_{2}, \ldots, a_{n}$ is not greater than the number $\left(k\left(m-\binom{n}{k}\right)\right)$ of positions in $m-\binom{n}{k}$ columns of $f[M]$. Indeed, $m \geq m_{0}=\left\lceil\frac{k\binom{n}{k}-n}{k-2}\right\rceil \geq \frac{k\binom{n}{k}-n}{k-2}$. Consequently, $m(k-2) \geq k\binom{n}{k}-n$ and $k\left(m-\binom{n}{k}\right) \geq 2 m-n$.

$$
\begin{aligned}
& M=\underbrace{\left[\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n} & \cdots \\
\cdot & \cdot & \cdot & & & \\
\vdots & \vdots & \vdots & & \vdots & \\
\cdot & \cdot & \cdot & & &
\end{array}\right]}_{\mathrm{m} \text { columns }} \\
& f[M]=\underbrace{\left[\begin{array}{cccc}
a_{i_{1}} & a_{j_{1}} & \cdots & \cdots \\
a_{i_{2}} & a_{j_{2}} & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
a_{i_{k}} & a_{j_{k}} & \cdots & \cdots
\end{array}\right]} \\
& \binom{n}{k} \text { columns } \\
& \text { all } k \text {-subsets of } \\
& \left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \\
& \begin{array}{c}
\qquad m-\binom{n}{k} \text { columns } \\
\text { all entries from the first two } \\
\text { rows of } M \text { except } a_{1}, a_{2}, \ldots, a_{n}
\end{array}
\end{aligned}
$$

We will show that $f \notin$ HVHV. Assume, by the way of contradiction, that there exist axial functions f_{1}, \ldots, f_{4} such that $f_{1} \in \mathrm{H}$ and $f=f_{1} \circ f_{2} \circ f_{3} \circ f_{4}$, i.e. $f[M]=f_{4}\left[f_{3}\left[f_{2}\left[f_{1}[M]\right]\right]\right]$.

Claim 1. There are k elements out of $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, say $a_{1}, a_{2}, \ldots, a_{k}$, such that there is a row of the matrix $f_{2}\left[f_{1}[M]\right]$ which does not contain any of these elements. To see this, first observe that f_{1} restricted to the first two rows of M is a permutation. This is so, because all the elements of M from the first two rows appear in the final matrix $f[M]$. Let us call the elements from the second row of $f_{1}[M]$ that appear in the same columns as $a_{1}, a_{2}, \ldots, a_{n}$ by $b_{1}, b_{2}, \ldots, b_{n}$, respectively. Since $n=k(k-1)$ and $|A|=k$, by the Pigeonhole Principle, there exists a row in $f_{2}\left[f_{1}[M]\right]$ which contains at least k elements out of $b_{1}, b_{2}, \ldots, b_{n}$. This row does not contain at least k elements out of $a_{1}, a_{2}, \ldots, a_{n}$.

Claim 2. Applying the functions $f_{3} \in \mathrm{H}$ and $f_{4} \in \mathrm{~V}$ to the matrix $\left.\left.f_{2}\left[f_{1}[M]\right]\right]\right]$ will not result in a matrix containing a column whose entries are
$a_{1}, a_{2}, \ldots, a_{k}$. Hence $f[M] \neq f_{4}\left[f_{3}\left[f_{2}\left[f_{1}[M]\right]\right]\right]$. A contradiction.
Let us mention here that, using similar technique to the one used in the proof of Theorem 3 (i), we can show the following.

Remark 5 Let $|A|=2$. Then $(A \times B)^{A \times B}=$ HVH. In addition, if $|B| \geq 3$, then $(A \times B)^{A \times B} \neq \mathrm{VHV}$.

The counterexample justifying the second part of the remark can be found in $[\mathrm{S}]$ (page 36).

References

[EG] A. Ehrenfeucht, E. Grzegorek, On axial maps of direct products I, Colloq. Math. 32 (1974), 1-11.
[G] E. Grzegorek, On axial maps of direct products II, Colloq. Math. 34 (1976), 145-164.
[M] R. D. Mauldin (Ed.), The Scottish Book; Math at the Scottish Cafe, Birkhäuser, Boston, MA, 1981.
[N] M. Nosarzewska, On a Banach's problem of infinite matrices Colloq. Math. 2 (1951), 194-197.
[S] M. Szyszkowski, On axial maps of the direct product of finite sets, Colloq. Math. 75 (1998), 33-37.

