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Darboux-like functions within the class of
Hamel functions

Abstract

In this paper we present a discussion of the relations of the classes
of Darboux-like functions within the classes of Hamel functions and
Sierpinski-Zygmund Hamel functions. We prove that the inclusion rela-
tions among Darboux-like classes remain valid in both cases (under the
assumption of CH for Sierpinski-Zygmund Hamel functions). In par-
ticular, assuming CH we prove the existence of a Sierpinski-Zygmund
Hamel function which is connectivity but not almost continuous. In
addition, we investigate the cardinal number Add(F1, F:) in the case
when one of the families Fi, F5 is Darboux-like or Sierpinski-Zygmund
and the other one is the class of Hamel functions, where Add(Fi, F») is
defined as the smallest cardinality of a family F' C R® for which there
is no g € Fy such that g + F C 5.

1 Definitions and main results

The terminology is standard and follows [2]. The cardinality of a set X we
denote by | X|. In particular, |R| is denoted by ¢. We consider only real-valued
functions. No distinction is made between a function and its graph. We write
f|A for the restriction of f to the set A C R. The interior of the set A is
denoted by int(A). For any function g and any family of functions F' C R® we
define g+ F = {g+ f: f € F}. Given P C R? and z € R, P, denotes the set
{y e R: (z,y) € P}.
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In this paper we investigate the relations among Darboux-like classes of
functions within the class of Hamel functions and within the class Sierpinski-
Zygmund Hamel functions. Before we state the results let us recall the defini-
tions of the classes of functions considered in the article. A function f: R — R
is:

e additive if f(x +y) = f(x)+ f(y) for all z,y € R;

e almost continuous (in sense of Stallings) if each open subset of R? con-
taining the graph of f contains also the graph of a continuous function
from R to R;

e connectivity function if the graph of f|I is connected in I x R for any
interval I (more general, f: X — R (X C R") is a connectivity function
if the graph of f|Z is connected in Z x R for any connected subset
Z CX);

e Darboux if f[K] is a connected subset of R (i.e., an interval) for every
connected subset K of R;

e an extendability function provided there exists a connectivity function
F: R x[0,1] — R such that f(z) = F(z,0) for every z € R;

e Hamel function if the graph of f is a Hamel basis for R?;

e peripherally continuous if for every x € R and for all pairs of open sets
U and V containing « and f(x), respectively, there exists an open subset
W of U such that x € W and f[bd(W)] C V (or equivalently, for every
z € R, there exist two sequences s, , x and t, \, x such that both
sequences f(s,) and f(¢,) converge to f(z));

o Sierpinski-Zygmund if for every set Y C R of cardinality continuum c,
fIY is discontinuous.

We use the following symbols to denote these classes: AD - additive, AC
- almost continuous, Conn - connectivity, D - Darboux, Ext - extendable, HF
- Hamel, PC - peripherally continuous, SZ - Sierpinski-Zygmund. The classes
AC, Conn, D, Ext, PC are called Darboux-like (for more information on these
classes see [5]). The following diagram presents relations among Darboux-like
classes (see [3] or [5]).

C

Ext - AC ~ Conn - D - PC

Chart 1.



The arrows in the above diagram represent strict inclusions. Recall here that
a function f: R — R is almost continuous if and only if it intersects every
blocking set, i.e., a closed set K C R? which meets every continuous function
and is disjoint with at least one function from R to R. The domain of every
blocking set contains a non-degenerate connected set. (See [5].) For a function
to be connectivity it suffices that its graph intersects every compact connected
subset K of R? such that dom(K) = ¢ (see [3, page 208]).

In [3] and [7], among other things, the authors investigate the relations
between the Darboux-like classes within the additive functions and within the
additive Sierpinski-Zygmund functions. In this paper we present a study of the
relations between the Darboux-like classes within the class of Hamel functions
and within the class of Sierpinski-Zygmund Hamel functions. The first result
shows that the strict inclusions from Chart 1 remain valid within the class of
Hamel functions. The proofs of the following main results (Theorems 1, 2,
and 3) are presented in the next section.

Theorem 1 The following holds for the Hamel functions from R to R.

CC Ext C ACC Conn CD C PC.

The following theorem shows the relations among Darboux-like functions
in the class of Sierpinski-Zygmund Hamel functions SZ N HF. Similar result
was proved for the class SZ N Add in [7]. Let us recall here that the existence
of a Sierpinski-Zygmund function which is Darboux (connectivity or almost
continuous) is independent of ZFC (see [1]). Therefore, to show that the
relations among the classes AC, Conn, and D are preserved in the class SZ N
HF, we will need an additional set-theoretic assumption. Specifically, we will
assume Continuum Hypothesis CH. However, one can show in ZFC that (SZN
HFND) C (SZNHF NPC) (see Example 9 at the end of this section). Let us
also recall here that the equality SZ N C = SZ N Ext = ) holds in ZFC. Hence
we have that (SZNHF NC) = (SZNHF NExt) = 0 in ZFC.

Theorem 2 Assume Continuum Hypothesis CH. The following is true for the
Sierpinski-Zygmund Hamel functions from R to R.

Ext C AC C Conn C D.

The next result gives the values of the cardinal function Add(Fy, F5) in the
case when one of the families F, F5 is HF and the other one is a Darboux-
like class or SZ. The cardinal number Add(F}, F») (F}, F» are proper non-
empty subsets of R®), introduced in [9], is the smallest cardinality of a family
F C RR for which there is no g € Fy such that ¢ + F C F5. Notice here
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that the function Add has the property of coordinate monotonicity, that is
Add(Gl,G) < Add(GQ,G) and Add(G,Gl) < Add(G,Gg) for Gl - GQ. Re-
call also here that Add(Fy, Fy) = 1 is equivalent to F; N Fy = () (to see that
choose F' consisting of a constant zero function). Values of Add have been
investigated for various pairs of families (Darboux-like, Sierpiriski-Zygmund,
additive functions; see [9]). The function Add has also been studied in a
special case when F; = RE. In this situation it is denoted by A, that is,
A(F) = Add(RE, F) for any F C RE.

Theorem 3

(i) Let F € {Ext,AC,Conn,D,PC}. Then the following equalities hold:
Add(HF,F) = A(F) and Add(F,HF) = A(HF). In addition, we also
have Add(C,HF) = Add(HF, C) = 1.

(ii) Add(SZ,HF) = A(HF) and Add(HF,SZ) > «.

Part (ii) gives only a lower bound for the cardinal Add(HF,SZ). It is
unknown whether Add(HF,SZ) = A(SZ).

Problem 4 Does Add(HF, SZ) equal to A(SZ) (in ZFC)?

Let us recall here that A(F) > ¢ for F € {Ext, AC, Conn, D,SZ} (see [5]).
The precise value of A(F) may by different in different models of ZFC. It is
also known that A(PC) = 2 and A(HF) = w (see [11]).

Remark 5 Add(AD,SZ) < Add(HF, SZ) and Add(AD, HF) = 1.

To see the above, fix F C R¥ such that |F| < Add(AD,SZ). Then there
exists a g € AD such that g + F C SZ. Let h € HF be a finitely continuous
function (see [12]; a function is finitely continuous if it is contained in the
union of finitely many continuous real functions defined on a subset of R).
Then h+ g € HF (by [10, Fact 3.1 (i)]) and (h+g) +F =h+ (g9 + F) C SZ.
To see Add(AD,HF) = Add(HF,AD) = 1 note that AD N HF = ( (the
latter follows from the fact that the graph of an additive function is linearly
dependent by the definition). [ |

Let us comment now on how the class HF of Hamel functions relates to all
the other families in terms of inclusion and intersection. It is easy to observe
that if Add(F}, Fy) > 2, then Fy N Fy # (). Thus, based on the values of Add
given by Theorem 3, we conclude that there exists a Hamel function belonging
to each of the classes: Ext, AC, Conn, D, PC, or SZ. From [10, Fact 3.1 (iii)]
we conclude that HF N C = (). This shows that none of Ext, AC, Conn, D,
or PC is contained in HF. It is obvious that SZ ¢ HF. But neither HF is
contained in SZ. The latter holds because one can construct a Hamel function
which is constant on a set of size ¢. This follows easily from the following fact.



Fact 6 Let X C R be a set linearly independent over Q. Then every function
f+ X — R can be extended onto R to a Hamel function.

PROOF. Let g € R® be a Hamel function. Define ¢’: R — R to be an additive
extension of f — (g|X). Notice that g+ ¢’ € HF by [10, Fact 3.1 (i)]. Since
(9+¢")|X = f we conclude that g 4+ ¢’ is a Hamel function extending f. N

Thus, what remains to be determined is whether HF is a subset of one of
Ext, AC, Conn, D, or PC. As one might expect this is not the case. Since the
class of all peripherally continuous functions contains all the other classes, it
is sufficient to justify that HF ¢ PC. An example of a Hamel function which
is not peripherally continuous can be easily constructed with the use of the
following lemma.

Lemma 7 Let V C R"™ be a Hamel basis and v' € V. For each v € V fix
qv € Q such that q,» # —1. Then the set V! = {v+ g,v': v € V} is also a
Hamel basis.

PRrROOF. It is easy to observe that Ling(V’) = R™. Indeed, V C Ling(V’)
since for each v € V we have v = (v + ¢v') — H"ZW (v 4 guv'). To see
that V' is linearly independent, choose v1,...,vy € V and ¢,...,q € Q and
assume that ¢1(v1 + ¢, ') + - 4+ qx(vk + @, v")) = 0 € R™. This implies

that qiv; + -+ + qxvr + ¢'v' = 0 for some ¢’ € Q. If vq,...,v, # v, then

obviously q1,...,qr = 0. If one of vy,..., vy is equal v’ (assume vy = v’), then
we conclude that gy, ..., qz—1 = 0. This implies that g (v’ + g,sv") = 0. Hence
qr = 0, since q,» # —1. [ ]

Example 8 There exists a Hamel function h: R — R which is not peripher-
ally continuous.

PROOF. Let f: R — R be any Hamel function. For each € R\ {0} choose
¢ € Q such that f(z) + ¢, f(0) ¢ (f(0) — 1, f(0) + 1) (note that f(0) # 0).
Now define h: R — R by h(0) = f(0) and h(z) = f(x) + ¢, f(0) for = # 0.
By Lemma 7 h is a Hamel function. Observe also that (0, h(0)) is an isolated
point of the graph of h. Hence h ¢ PC. (]

Example 9 There exists a Sierpiniski-Zygmund Hamel function, which is pe-
ripherally continuous but not Darboux.

PROOF. Let h € SZNHF (SZNHF # - see the comments following Remark 5).
Choose a dense set A C R such that |[A| < ¢ and h~1(0) C A. Such a set exists
since |h71(0)] < ¢. Next we use Lemma 7 (v/ = (0,h(0)) and ¢, = 0) to
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redefine h on the set A so that h C R? is dense and h~1(0) = (). The first
condition implies that & € PC and the second condition implies that h ¢ D.
Based on Lemma 7 we have that h is still a Hamel function. Finally, since
|A] < ¢ we conclude that h € SZ. [ |

2 Proofs of main results

We will start with the proof of Theorem 3. Before proceeding, let us restate
an analogous theorem for additive functions, which was proved in [9].

Theorem 10 [9, Theorem 10] Let F € {Ext, AC, Conn, D, PC,SZ}. The fol-
lowing holds.

(i) Let F € {Ext,AC,Conn,D,PC}. Then the following equalities hold:
Add(AD,F) = A(F) and Add(F,AD) = A(AD). In addition, we also
have Add(C, AD) = Add(AD,C) = 1.

(ii) Add(SZ,AD) = A(AD) and Add(AD,SZ) > .
PROOF OF THEOREM 3.

We proof only part (i). The proof of (ii) is very similar. Let F €
{Ext, AC, Conn, D, PC}. We will show that Add(HF,F) = A(F). Choose an
F C RE such that |F| < A(F) and a function f € HF. Based on the equality
Add(AD, F) = A(F), there exists a function g € AD such that g+(f+F) C F.
Let f' = g+ f. Observe that f € HF (see [10, Fact 3.1 (i)]) and f'4+ F C F.
This shows that Add(HF,F) > A(F). The opposite inequality follows from
the monotonicity of Add, that is Add(HF, F) < Add(RE, F) = A(F).

Now we prove Add(F,HF) = A(HF). It suffices to show Add(F,HF) >
A(HF). Choose an F' C RF such that |F| < A(HF). From the definition of A,
there exists a function f € R® shifting F' into HF, e.g. f + F C HF. Using
again the equality Add(AD,F) = A(F) (recall that A(F) > ¢), we can find a
g € AD with the property g+{f} C F. Note that (9+ f)+F =g+ (f+F) C
g+ HF =HF and g + f € F. This proves Add(F,HF) > A(HF).

The equalities Add(C, HF) = Add(HF, C) = 1 follow from HFNC = 0 (see
[10, Fact 2.3 (iii)]). [ |

Before we prove Theorems 1 and 2 we will restate some know results and
proof additional lemmas. In [13] the author defines a subset of [0, 1]? which is
used to construct an example of a function from [0, 1] to [0, 1] which is connec-
tivity but not almost continuous. In [4] the authors modify this construction
to give an example of a function from R to R which is connectivity (with some
additional properties) but not almost continuous. Specifically, they prove the



following lemma (the set C from the lemma is defined as Z+C, where C' C [0, 1]
is a Cantor set of Lebesgue measure 3 (for details see [4, page 4])).

Lemma 11 [4, Lemma 2.1] Let X be a countable dense subset of (—1,1).
Then there exists an embedding F = (Fy, F1): R — (—1,1) x R such that Fj

is non-decreasing,

(a) an open arc M = F[R] is closed in R?,

(b) if Z = F[C] C M then gN Z # ) for every continuous g : [—-1,1] — R,
(¢) Z, = M, is a singleton for all x € (—1,1) \ X, and

(d) for each x € X the section M, is a non-trivial closed interval and Z,
consists of the two endpoints of that interval.

Let us mention here that the function F' from the proof of the above lemma
has the following property: the coordinate function Fj is decreasing on the
intervals on which the coordinate function Fj is constant. Next we will prove
an important property of the set Z.

Fact 12 Let K be a compact connected subset of R? such that dom(K) = c.
Then (a) {z} x M, C K for some x € X or (b) [({1 x L)NK|NZ =0 for
some non-degenerate intervals I; and I5 such that dom[(I; x Ix) N K| = I.

PRrROOF. Let Ix = dom(K). First observe that either Ix \dom(KNZ) contains
a non-degenerate interval or Ix = dom(K N Z). If the first condition holds
then obviously (b) is true. So assume that I = dom(K N Z). In this case
we can conclude that Z N (int(Ix) x R) C K. To see that first notice that
Z N ([int(Ix) \ X] x R) € K. Next observe that Z N ([(—1,1) \ X] x R) is
dense in Z. This follows from the fact that F is continuous, Z = F[C], and
F7YHZN([(=1,1)\ X] x R)] is dense in C. Finally, since Z and K are closed,
we conclude that Z N (int(Ix) x R) C K.

Now assume that for all z € X Nint(Ix) we have {2} x M, € K (otherwise
the condition (a) holds). Choose (zg,yo) € M\ K (o € X Nint(Ix)). Since K
is closed, there exists § > 0 such that ((zg — 0,20+ ) x {yo}) N K = 0. Next,
because K is connected we conclude that dom|[((xg—d, z¢) X (—00,y0)) N K] =
(zo — 8, 0) or dom[((zg,x0 + d) X (y0,00)) N K] = (zg, 20 + ). Indeed, if
for some = € (xg — 0,20) we have ({z} X (—o00,y0)) N K = () then we must
have ({z'} x (yo,00)) N K # ( for every z' € (xo,z9 + §). Assume that
dom[((xg—6,x0) X (—00,y0))NK] = (x0—J, o) (in the other case the following
argument is very similar).

Next we claim that there exists 0 < ¢ < § such that for every x €
(xo — &', 29) we have that M, C (yo,00). Observe that the claim implies
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(b) (which finishes the prove of the fact). To see the claim assume that there
is a sequence z, € int(Ix) such that z, / xg and M, < (yo,00). Let
y' = max M,, and t' € (—1,1) be such that F(¢') = (xg,y’). Note here that,
since F} is decreasing on the intervals on which Fp is constant (see the remark
after Lemma 11), Fo(t) < Fo(t') = zg for all ¢ € (—1,¢'). Next, let ¢, € (—1,1)
be such that Fy(t,,) = =, and Fy(¢t,) = min M, . Observe that t,, is an increas-
ing sequence since Fj is non-decreasing. Hence ¢, converges and limt, = t’
because otherwise we would have zy = limz, = lim Fy(t,) < F(t') = xo.
Consequently, lim F (t,) < yo. On the other hand (from continuity of F}) we
have that lim Fy (¢,) = F1(t') =y > yo. A contradiction. [ |

Recall also the following property of extendable functions.

Theorem 13 [4, Theorem 3.1] If f: R — R is an extendable function with a
dense graph then for every a,b € R, a < b, and for each Cantor set K between
f(a) and f(b) there is a Cantor set C' between a and b such that f[C] C K
and the restriction f | C is continuous strictly increasing.

PROOF OF THEOREM 1.

(HF N C) ¢ (HF N Ext):
This statement easily follows from Theorem 3 (i) and properties of the
function Add (HF N C = () and HF N Ext # 0).

(HF N Ext) € (HF N AC):

Denote by {B, € R? : a < ¢} and {C, € R : @ < ¢} the collections
of all blocking and perfect sets, respectively. Also, let R = {y,: a < c}.
Choose an infinite countable dense set A C R and sequences a, € Cq, by €
Cy,Co € dom(B,) such that the elements of the set A and terms of these
sequences are all linearly independent over Q. The choice is possible since
|Co| = |dom(B,)| = ¢. Now define a function h as follows: h|A is a dense
subset of R?, h(as) = h(bs), and (cq,h(ca)) € Ba. Next extend h onto R
to a Hamel function by using the Fact 6. The function is almost continuous
because it intersects every blocking set and is not extendable by Theorem 13.

(HF N'AC) € (HF N Conn):

Let {K,: a < ¢} be the collection of all compact connected subsets of
R? such that dom(K,) = ¢ and {2} x M, Z K, for all x € X, where X C
(—1,1) is a countable linearly independent (over Q) set which is dense in
(—=1,1) and M is the set from Lemma 11 for this X. Construct a linearly
independent set H = {hy: o < ¢} C R satisfying the following conditions:
Ling(X)NLing(H) = {0} and ({ha} xR)N (K, \ Z) # 0 for every a < ¢. The
existence of such a set follows from Fact 12. Now define A: R — R by defining
iton HUX as (x,h(z)) € My \ Z, for © € X and (ha, h(ha)) € (Ko \ Z2)n,



and then extending it to a Hamel function on R by using Fact 6. Notice
that [h|(H U X)|NZ = 0. Now define h’: R — R by modifying / on the set
dom(h N Z) as follows: h/(z) = h(x)+ h(0). We conclude that ' N Z = () and
h' N K # 0 for each compact connected set K C R? such that dom(K) = «¢.
The latter implies that A’ € Conn. Based on the condition ' N Z = @, we
conclude that b’ ¢ AC. Indeed, consider the open set R? \ Z. It contains h’
but does not contain any continuous function (by Lemma 11 (b), Z intersects
every continuous function). By Lemma 7 we have that b’ € HF.

(HF N Conn) C (HF N D) C (HF N PC):

Let H C R be a Hamel basis which is ¢-dense. Define h: H — R such
that h=1(y) is dense in R for every y € R. Next extend h onto R to a Hamel
function. Now we will define hy as follows. Put hy|(R\h~1(1)) = h|(R\h~1(1))
and hy(z) = h(x)+h(0) for allz € h=1(1). Observe that h; is a Hamel function
(by Lemma 7), hy C R? is dense, and hy'(1) = §. Hence h; € PC\ D. To
define hy we redefine h on the set E = dom(h N {{z,z): z € R}) in a similar
fashion. That is, ho|(R\ E) = h|(R\ E) and ha(z) = h(z)+h(0) for all z € E.
Similarly, we note that ho € HF by Lemma 7. In addition, h;l(y) is dense in
R for every y € R. Hence hy € D. Finally, since ho N {{z,z): x € R} =0, we
conclude that hy € D\ Conn. [

PROOF OF THEOREM 2.

Let G = {ga : @ < ¢} be the set of all continuous functions defined on
G5 subsets of R = {z, : @ < ¢}. Choose a countable dense set X C (—1,1),
which is linearly independent over Q. Let Z and M be as in Lemma 11 for
the set X. In addition, let us denote the collection of all continua in R? with
uncountably many uncountable vertical sections by K = {K, : a < ¢} (i.e,
{z € R: [(Kq)z| = ¢}| = ¢). We will define by induction a sequence of partial
functions h, (a < ¢) such that:

(0) X Cdom(hy) and ho|X C M\ Z;

(1) hg C he for B < &;

(i) zq € dom(hq);

(iii) (0,z4) € Ling(hq);

(iv) ho C R? is linearly independent over Q;
(v) (ga Nhe) C hq, for a < &;

(vi) if dom(ga \ Ugc, 9¢) s of second category, then hq is dense in (ga \
Ug<a 9¢)|Ua, where U, C R is the maximal open set such that dom(ga \
<o 9¢) s residual in Uy;
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(vii) ha N (Kq\ Z) % 0.

First we present the construction of the sequence h, (a < ¢). Define
ho on X such that h(x) € M, \ Z,. Next, if g ¢ dom(hg), then choose
ho(zo) € R\ Ling(ho(X)). If (0,z0) ¢ Ling(ho), choose z ¢ Ling(dom(hy))
and define ho(z) = ho(—2) = %xo. Let Uy be the maximal open set such
that dom(go) is residual in Uy. Choose a countable linearly independent dense
subset Dy C (dom(go) NUp) \ Ling(dom(hg)) and put ho| Dy = go|Do. Finally,
choose w € {z € R: |(Kp)z| = ¢} \ Ling(dom(hg)) and define ho(w) € (Ko)w \
Zy. It is easy to see that hg satisfies all the conditions (0)-(vii).

Now assume that the sequence h¢ has been defined for £ < a. Put hy =
Ugco he- If 2o ¢ dom(h,), then choose ha(za) € R\ Ling(ha(dom(hq)) U
Ue<alge(@a)}). I (0,24) ¢ Ling(ha), choose z ¢ Ling(dom(h,)) and define
ha(z) and ha(—2) so that ha(2) +ha(—2) = za and ha(£2) ¢ Ue,{9¢(£2)}-

Now consider the set Uy, the maximal open set in which dom(ga \U¢, 9¢)
is residual. Like in the case of hy, we will select a countable linearly indepen-
dent dense subset Dy C (dom(ga \ Ug-, 9¢) N Uo) \ Ling(dom(hy)) and put
ha|Do = go|Dqo. Finally, choose w € {x € R: |(Ky)z| = ¢} \ Ling(dom(h,,))
and define ho(w) € (Ko)w \ Zw. It is easy to see that h, satisfies all the
conditions (0)-(vii).

Define h = {J,. ha. The function h will serve as a starting point for
functions justifying each of the parts of the theorem. Obviously dom(h) = R.
Also notice that h € HF based on conditions (i), (iii), and (iv). Condition (v)
implies that h € SZ.

(SZNHF NExt) C (SZNHF N AC):

We will argue that h is almost continuous (no extendability function can be
in SZ). Let B C R? be any blocking set. There exists a non-degenerate interval
I C dom(B) and a continuous function g such that dom(g) is Gs dense subset
of I and g C B. Let o be the smallest ordinal number with this property (i.e.,
there exists a non-degenerate interval I C dom(B) and a continuous function
contained in B and defined on a residual set in ). Then dom(ga, \ Ug <o, 9¢)
is of second category (since we assume CH). Therefore, the open set U, is not
empty and consequently D,, # (. Hence (h|Dy,) N B = (guoy|Day) N B # 0.
This implies that h € AC.

(SZNHF N AC) € (SZNHF N Conn):

Consider the set Ez = {z: (x,h(x)) € Z}. The properties of the set Z and
the fact that h € SZ imply that |Ez| < ¢. We will define hy by redefining h on
the set Ez (that will keep hy in the class SZ). Put hp|(R\ Ez) = h|(R\ Ez)
and hy(x) = h(z) + h(0) for € Ez. By Lemma 7, h, € HF. Since hy,NZ = ()
we have that h, ¢ AC. What remains to show is that h; € Conn. To see that
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fix a continua K C R? with |[dom(K)| = ¢. Then by Fact 12 (a) {z} x M, C K
for some z € X or (b) [(I1 X I2)NK]|NZ = () for some non-degenerate intervals
I, and I such that dom[(I; x I3) N K| = I; (we may assume that I, Iy are
closed). If (a) holds, then by condition (0) hy N K # (. Now assume that
(b) holds. Let A = {x € R: |K,| = ¢}. If |A] = ¢, then by condition (vii)
hy N K # ). Suppose that |A] = w. Note that the set [(I1 \ A) x L]NK is a
Borel set with each vertical section countable. Hence, by Lusin Theorem (see
e.g., [14, Theorem 5.7.2, page 205]), there is a Borel function g: (I3 \ 4) - R
contained in (I3 x I2) N K. This implies the existence of a continuous function
g C (I x Is) N K defined on a dense G5 subset of I1. Let g be the smallest
ordinal number with the property that go,|l1 € (I3 x I2) N K and dom(gq,)
is residual in some non-degenerate interval I C I;. Then dom(ga, \ Ug<q, 9¢)
is of second category (since we assume CH). Therefore, the open set U,, is
not empty and consequently Do, # 0. Hence (hy|Dqy,) N [(I1 X I) N K] =
(halDay) 1 (11 X I3) (1 K] = (gag | Deay) N [(11 x I2) (K] 0.

(SZNHF N Conn) C (SZNHF ND):

To construct a function witnessing the above property we redefine h on
the set E = dom(h N {(z,z): x € R}). Put hJ(R\ E) = h|(R\ E) and
he(x) = h(zx) + h(0) for all x € E. We note that h, € HF N SZ. In addition,
h1(y) is dense in R for every y € R. Hence h. € D. Finally, since h. N
{{z,z): z € R} = 0, we conclude that h. € (SZNHF N D)\ Conn. [ |
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