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ON FUNCTIONS WHOSE GRAPH IS A HAMEL BASIS II

KRZYSZTOF P LOTKA

Abstract. We say that a function h : R → R is a Hamel function (h ∈ HF)
if h, considered as a subset of R2, is a Hamel basis for R2. We show that

A(HF) ≥ ω, i.e., for every finite F ⊆ RR there exists f ∈ RR such that

f + F ⊆ HF. From the previous work of the author it then follows that
A(HF) = ω (see [P]).

The terminology is standard and follows [C]. The symbols R and Q stand for

the sets of all real and all rational numbers, respectively. A basis of Rn as a linear

space over Q is called Hamel basis. For Y ⊂ Rn, the symbol LinQ(Y ) stands for

the smallest linear subspace of Rn over Q that contains Y . The zero element of

Rn is denoted by 0. All the linear algebra concepts are considered for the field of

rational numbers. The cardinality of a set X we denote by |X|. In particular, c

stands for |R|. Given a cardinal κ, we let cf(κ) denote the cofinality of κ. We say

that a cardinal κ is regular if cf(κ) = κ. For any set X, the symbol [X]κ denotes

the set {Z ⊆ X : |Z| < κ}. For A,B ⊆ Rn, A+B stands for {a+ b : a ∈ A, b ∈ B}.
We consider only real-valued functions. No distinction is made between a func-

tion and its graph. For any two partial real functions f, g we write f + g, f − g
for the sum and difference functions defined on dom(f) ∩ dom(g). The class of

all functions from a set X into a set Y is denoted by Y X . We write f |A for the

restriction of f ∈ Y X to the set A ⊆ X. For B ⊆ Rn its characteristic function is

denoted by χB . For any function g ∈ RX and any family of functions F ⊆ RX we

define g + F = {g + f : f ∈ F}. For any planar set P , we denote its x-projection

by dom(P ).

The cardinal function A(F), for F  RX , is defined as the smallest cardinality

of a family G ⊆ RX for which there is no g ∈ RX such that g + G ⊆ F. Recall

that f : Rn → R is a Hamel function (f ∈ HF(Rn)) if f , considered as a subset of

Rn+1, is a Hamel basis for Rn+1. In [P], it was proved that 3 ≤ A(HF(Rn)) ≤ ω.

In the same paper, the author asked whether A(HF(Rn)) = ω (Problem 3.5). The

following theorem gives a positive answer to this question.

2000 Mathematics Subject Classification. Primary 26A21, 54C40; Secondary 15A03, 54C30.

Key words and phrases. Hamel basis, additive and Hamel functions.
The work was supported in part by the intersession research grant from the University of

Scranton.

1



2 KRZYSZTOF P LOTKA

Theorem 1. A(HF(Rn)) ≥ ω, i.e. for every finite F ⊆ RRn

, there exists g ∈ RRn

such that g + F ⊆ HF(Rn).

Before we prove the theorem we state and prove the following lemmas.

Lemma 2. Let b1, . . . , bm ∈ R be arbitrary numbers. There exists a linear basis

C of LinQ(b1, . . . , bm) such that bi +C is also a basis of LinQ(b1, . . . , bm), for every

i ≤ m.

Proof. Without loss of generality we may assume that LinQ(b1, . . . , bm) 6= {0}.
Let C ′ = {c1′, . . . , ck′} be any linear basis of LinQ(b1, . . . , bn). So, for every i ≤ m

there are pi1
′, . . . , pik

′ ∈ Q such that∑
j

pij
′cj
′ = bi.

Now, choose q ∈ Q \ {0} satisfying the following condition for all i

q
∑
j

pij
′ 6= −1.

We claim that C = {c1, . . . , ck} = 1
qC
′ = { 1

q c1
′, . . . , 1

q ck
′} is the desired basis. To

prove this we need to show that for every i ≤ m

• bi + C is linearly independent.

To see this consider a zero linear combination
∑
j pij(bi + cj) = 0. We

have that
∑
j pijcj = −bi

∑
j pij . If

∑
j pij = 0 then obviously pi1 = · · · =

pik = 0. So we may assume that
∑
j pij 6= 0. Next we divide both sides

of
∑
j pijcj = −bi

∑
j pij by −

∑
j pij and obtain that

∑
j

pij
−

∑
j pij

cj = bi.

On the other hand
∑
j pij

′cj
′ =

∑
j pij

′qcj = bi. So we conclude that
pij

−
∑

j pij
= qpij

′ for all j ≤ k and consequently q
∑
j pij

′ =
∑
j

pij
−

∑
j pij

=

−1. A contradiction.

Now, since dim(LinQ(bi + C)) = dim(LinQ(C)) and LinQ(bi + C) ⊆ LinQ(C), we

conclude that LinQ(bi + C) = LinQ(C) = LinQ(b1, . . . , bm).

Let us note here that the above lemma cannot generalized onto infinite case. As

a counterexample take {b1, b2, b3, . . . } = Q and observe that there is no basis C

with the required properties.

Lemma 3. [PR, Lemma 2] LetH ⊆ Rn be a Hamel basis. Assume that h : Rn → R
is such that h|H ≡ 0. Then h is a Hamel function iff h|(Rn \H) is one-to-one and

h[Rn \H] ⊆ R is a Hamel basis.
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Lemma 4. Let X be a set of cardinality c and k ≥ 1. TFAE:

(a) for all f1, . . . , fk : Rn → R, there exists f ∈ RRn

such that f + fi ∈ HF(Rn)

(i = 1, . . . , k).

(b) for all g1, . . . , gk ∈ RX , there exists g ∈ RX such that g+ gi is one-to-one

and (g + gi)[X] ⊆ R is a Hamel basis (i = 1, . . . , k).

Proof. (a)⇒ (b) Choose a Hamel basis H ⊆ Rn and a bijection p : Rn \H → X.

Put fi = (gi◦p)∪(0|H). By (a), there exists an f ∈ RRn

such that f+fi ∈ HF(Rn)

(i = 1, . . . , k). Now, let A ∈ Add(Rn) be such that f |H = A|H and put f ′ = f−A.

Note that f ′ + fi = (f + fi) − A ∈ HF(Rn) − Add(Rn) = HF(Rn) (see [P, Fact

3.1]) and also (f ′ + fi)|H ≡ 0, (i = 1, . . . , k). Hence, by Lemma 3 we claim that

(f ′ + fi)|(Rn \H) is a bijection onto a Hamel basis. Now define g = f ′ ◦ p−1 and

note that it is the required function.

(b) ⇒ (a) Let H be like above. Choose Ai ∈ Add(Rn) such that fi|H ≡ Ai|H
for every i = 1, . . . , k. Put X = Rn \ H and gi = (fi − Ai)|X for i = 1, . . . , k.

By (b), there exists a g : X → R such that g + gi is a bijection between X and a

Hamel basis. Define f = g ∪ (0|H) and observe that f + fi = [f + (fi−Ai)] +Ai =

[(g + gi) ∪ (0|H)] + Ai. Since (g + gi) ∪ (0|H) ∈ HF(Rn) by Lemma 3, using [P,

Fact 3.1] we conclude that [(g + gi) ∪ (0|H)] + Ai ∈ HF(Rn) for each i = 1, . . . , k.

Hence f is the required function.

Lemma 5. Let X be a set of cardinality c, ω ≤ κ < c, and f1, . . . fk ∈ RX

be functions such that |fi[X]| = c. Then there exist pairwise disjoint subsets

A1, . . . An ⊆ X of cardinality κ+ each and satisfying the following property: for

every i = 1, . . . , k and j = 1, . . . , n the restriction fi|Aj is one-to-one or constant

and |fi[
⋃
Aj ]| = κ+ (i.e. fi is one-to-one on at least one of the sets).

Proof. We prove the lemma by induction on k. If k = 1, then the conclusion

is obvious (note that κ+ ≤ c). Now assume that the lemma holds for k ∈ ω and

let f1, . . . fk+1 ∈ RX be functions such that |fi[X]| = c. Based on the inductive

assumption, let A1, . . . An ⊆ X be sets with the required properties for the functions

f1, . . . fk. If |fk+1[
⋃
Ai]| = κ+, then by reducing the original sets A1, . . . An we

will obtain sets which work for all the functions f1, . . . fk+1. In the case when

|fk+1[
⋃
Ai]| ≤ κ, we can find a subset An+1 ⊆ X disjoint with

⋃n
1 Ai such that

|An+1| = κ+ and fk+1|An+1 is injective. Now, by appropriately reducing the sets

A1, . . . An+1 we will obtain the desired sets.
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Lemma 6. Let X be a set of cardinality c, f1, . . . fk ∈ RX be functions such that

|fi[X]| = c, B0, B1 ⊆ R be such that |B0 ∪ B1| < c, and y ∈ R \ LinQ(B0). Then

there exist y1, . . . , yn ∈ R and x1, . . . , xn ∈ X such that

(a)
∑n

1 yj = y,

(b) {y1, . . . , yn}, {yj + fi(xj) : j = 1, . . . , n} are both linearly independent over

Q and LinQ({y1, . . . , yn})∩LinQ(B0) = LinQ({yj + fi(xj) : j = 1, . . . , n})∩
LinQ(B1) = {0} for all i = 1, . . . , k.

Proof. Put κ = |B0∪B1∪ω| and let A1, . . . An ⊆ X be the sets from Lemma 5 for

functions f1, . . . fk. First we will define the values y1, . . . , yn. Let {b1, . . . bs} be the

set of all values such that fi|Aj ≡ bl for some i, j, l. Choose y2, . . . , yn to be linearly

independent over Q such that LinQ({y2, . . . , yn})∩LinQ(B0∪B1∪{b1, . . . , bs, y}) =

{0}. This can be easily done by extending the basis of LinQ(B0∪B1∪{b1, . . . , bs, y})
to a Hamel basis and selecting (n − 1) elements from the extension. Next define

y1 = y − (y2 + · · ·+ yn).

Obviously
∑n

1 yj = y. We claim that {y1, . . . , yn} is linearly independent over Q
and LinQ({y1, . . . , yn}) ∩ LinQ(B0) = {0}. Assume that α1y1 + · · ·+ αnyn = 0 for

some rationals α1, . . . , αn. From the definition of y1 we get (α2−α1)y2 + · · ·+(αn−
α1)yn = −α1y. Based on the way y2, . . . , yn were selected we conclude that α1 = 0

and consequently α2 = · · · = αn = 0. Next assume that q1y1 + · · · + qnyn = b

for some rationals q1, . . . , qn and b ∈ LinQ(B0). Then, proceeding similarly like

above, we obtain that (q2 − q1)y2 + · · · + (qn − q1)yn ∈ LinQ(B0 ∪ {y}), which

implies that q1 = · · · = qn. Consequently, if q1 6= 0, then we could conclude that

y ∈ LinQ(B0). That would contradict one of the assumptions of the lemma. Hence

q1 = · · · = qn = 0 and the sequence y1, . . . , yn satisfies the required conditions.

Before we define the sequence x1, . . . , xn, we observe some additional properties

of y1, . . . , yn. Fix 1 ≤ i ≤ k. Let Ai1 , . . . , Ail (i1 < · · · < il) be all the sets on which

fi is constant and let bi1 , . . . , bil be the values of fi on these sets, respectively. Note

that properties of the sets A1, . . . , An imply that {i1, . . . , il}  {1, . . . , n}. We will

show that

(1) (yi1 + bi1), . . . , (yil + bil) are linearly independent,

(2) LinQ({(yi1 + bi1), . . . , (yil + bil)}) ∩ LinQ(B1) = {0}.

To see (1) assume that α1(yi1 + bi1) + · · · + αl(yil + bil) = 0 for some rationals

α1, . . . , αl. This implies α1yi1 + · · · + αlyil = −(α1bi1 + · · · + αlbil) ∈ LinQ(B0 ∪
B1 ∪ {b1, . . . , bs, y}). If i1 6= 1, then it easily follows that α1 = · · · = αl = 0.

If i1 = 1, then we can write α1yi1 + · · · + αlyil = α1y1 + α2yi2 + · · · + αlyil =

α1[y − (y2 + · · · + yn)] + α2yi2 + · · · + αlyil ∈ LinQ(B0 ∪ B1 ∪ {b1, . . . , bs, y}).
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Consequently, −α1(y2+· · ·+yn)+α2yi2 +· · ·+αlyil ∈ LinQ(B0∪B1∪{b1, . . . , bs, y}).
Since {i1, . . . , il}  {1, . . . , n}, after simplifying the expression −α1(y2 + · · · +

yn) + α2yi2 + · · · + αlyil , there will be at least one term yj with the coefficient

being exactly −α1. Hence, we conclude that α1 = 0 and as a consequence of that

α2 = · · · = αl = 0. This finishes the proof of (1). Similar argument shows (2).

Next we will define the elements x1, . . . , xn ∈ X (by induction). Choose

x1 ∈ A1 \
⋃

i≤k,fi is 1-1 on A1

f−1
i [LinQ(B1 ∪ {b1, b2, . . . , bs, y1, . . . , yn})].

This choice is possible since |A1| = κ+ > κ ≥ |LinQ(B1∪{b1, b2, . . . , bs, y1, . . . , yn})|
and together with the condition (2) assures that LinQ({y1 +fi(x1) : fi|A1 is 1-1})∩
LinQ(B1 ∪ {b1, b2, . . . , bs, y1, . . . , yn}) ⊆ {0} and LinQ({y1 + fi(x1)}) ∩ LinQ(B1) =

{0} for all i ≤ k.

Now assume that x1 ∈ A1, . . . , xm−1 ∈ Am−1 (m < n) have been defined and

they satisfy the following property: (?) {yj + fi(xj) : j = 1, . . . ,m − 1} is lin-

early independent, LinQ({yj + fi(xj) : j ≤ m − 1 and fi|Aj is 1-1}) ∩ LinQ(B1 ∪
{b1, b2, . . . , bs, y1, . . . , yn}) ⊆ {0}, and LinQ({yj + fi(xj) : j = 1, . . . ,m − 1}) ∩
LinQ(B1) = {0} for all i = 1, . . . , k. Choose xm ∈ Am such that

xm 6∈
⋃

i≤k,fi is 1-1 on Am

f−1
i [LinQ(B1 ∪ {b1, b2, . . . , bs, y1, . . . , yn, fi(x1), . . . , fi(xm−1)})].

The choice of xm implies that

ym + fi(xm) 6∈ LinQ(B1 ∪ {b1, b2, . . . , bs, y1, . . . , yn, fi(x1), . . . , fi(xm−1)})

for all i ≤ k such that fi is 1-1 on Am. This combined with the inductive assump-

tion (?) and the conditions (1) and (2) leads to the conclusion that {yj+fi(xj) : j =

1, . . . ,m} is linearly independent, LinQ({yj + fi(xj) : j ≤ m and fi|Aj is 1-1}) ∩
LinQ(B1∪{b1, b2, . . . , bs, y1, . . . , yn}) ⊆ {0}, and LinQ({yj+fi(xj) : j = 1, . . . ,m})∩
LinQ(B1) = {0} for all i = 1, . . . , k. Based on the induction we claim that the

sequence x1, . . . , xn ∈ X has been constructed and it satisfies the following condi-

tion: {yj + fi(xj) : j = 1, . . . , n} is linearly independent and LinQ({yj + fi(xj) : j =

1, . . . , n}) ∩ LinQ(B1) = {0} for all i = 1, . . . , k.

Summarizing, the sequences x1, . . . , xn ∈ X and y1, . . . , yn ∈ R satisfying the

conditions (a) and (b) have been constructed.

Remark 7. Let A′ ⊆ A and f1, f2 : A → R. If (f1 − f2)[A] ⊆ LinQ(f1[A′]) ∩
LinQ(f2[A′]), then LinQ(f1[A]) = LinQ(f2[A]).
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The remark easily follows from the equality

l∑
1

αif1(xi) =

l∑
1

αif2(xi) +

l∑
1

αi[f1(xi)− f2(xi)].

Proof of Theorem 1. Let X be a set of cardinality c. By Lemma 4, it suffices

to show that for arbitrary f1, . . . , fk : X → R there exists a function g : X → R
such that g + fi is 1-1 and (g + fi)[X] is a Hamel basis (i = 1, . . . , k). The proof

in the general case will be by transfinite induction with the use of the previously

stated auxiliary results. However, in the special case when |fi[X]| < c for all i,

it can be presented without the use of induction. The method is interesting and

also used in part of the proof of general case, so we present it here. Assume that

|fi[X]| < c for all i, let V = LinQ (
⋃
fi[X]), and λ < c be the cardinality of

a linear basis of V . Choose Z ⊆ X such that |Z| = λ and fi|Z is a constant

function for every i and let {b1, . . . , bm} =
⋃
fi[Z]. Next we define a Hamel basis

H. Let C be a basis of LinQ(b1, . . . , bm) from Lemma 2, H1 be an extension of

C to a basis of V , and finally H be an extension of H1 to a Hamel basis. Define

g : X → H as a bijection with the property that g[Z] = H1. We claim that g + fi

is 1-1 and (g + fi)[X] is a Hamel basis (i = 1, . . . , k). To see this recall that

bj + C is linearly independent, LinQ(bj + C) = LinQ(C) = LinQ({b1, . . . , bm}) (see

Lemma 2), and C ⊆ H1. This implies that LinQ(bj+H1) = LinQ(H1), bj+(H1 \C)

is linearly independent, and as a consequence, bj + H1 is linearly independent.

Therefore, since fi[Z] = {bj} for some j, we have that (g+ fi)[Z] = bj +H1. Thus

(g+fi)[Z] is linearly independent and LinQ((g+fi)[Z]) = LinQ(H1). Finally, since

fi[X] ⊆ LinQ(H1) = LinQ((g+fi)[Z]), we can similarly conclude that (g+fi)[X] is

linearly independent and LinQ((g + fi)[X]) = LinQ(g[X]) = LinQ(g[X]) = R. This

finishes the proof of the special case.

Now we prove the result for arbitrary functions f1, . . . , fk : X → R. We start

by dividing {f1, . . . , fk} into abstract classes according to the relation: fi ≈ fj iff

|(fi − fj)[X]| < c (it is easy to verify that this is an equivalence relation). Put

K =
⋃
i

⋃
fj≈fi(fi − fj)[X], κ = |ω ∪K|, and note that κ < c. There exists a set

Z ⊆ X such that |Z| = κ+ and for all i, j the function (fi − fj)|Z is one-to-one or

constant (the existence of such a set can be shown by using an argument similar

to the one from the proof of Lemma 5; obviously, if fi ≈ fj , then (fi − fj)|Z is

constant). Our goal is to define g : Z ′ → R for some Z ′ ⊆ Z such that for every i ≤ k
g + fi is injective, (g + fi)[Z

′] is linearly independent, and K ⊆ LinQ((g + fi)[Z
′]).

Define V = LinQ(K) and introduce another equivalence relation among the

functions f1, . . . , fk: fi ∼= fj iff (fi − fj)|Z is constant. Note that ≈⊆∼=. Let
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fi1 , . . . , fil be representatives of the abstract classes of the relation ∼=. Consider⋃l
s=1

⋃
fj∼=fis

(fj − fis)[Z] = {b1, . . . , bm}. By Lemma 2, there exists a linear

basis C of LinQ({b1, . . . , bm}) such that br + C (r ≤ m) is also a linear basis

for LinQ({b1, . . . , bm}). Let H1 be a linear basis of V extending C. Choose a

set Z1 ⊆ Z such that |Z1| = |H1| and (fj − fi1)[Z1] is linearly independent

and LinQ((fj − fi1)[Z1]) ∩ V = {0} for all fj 6∼= fi1 . This can be done since

|Z| = κ+ > |V | ≥ |H1| and (fj − fi1)|Z is injective for every fj 6∼= fi1 . Let

g′1 : Z1 → H1 be a bijection and define g : Z1 → R by g = g′1−fi1 . Then g+fj is one-

to-one for all j, (g+fj)[Z1] is linearly independent for all j, LinQ((g+fj)[Z1]) = V

for fj ∼= fi1 (see the argument in the special case in the beginning of the proof), and

LinQ((g+ fj)[Z1])∩V = {0} for fj 6∼= fi1 (the latter follows from the fact that if Y1

and Y2 are both linearly independent and LinQ(Y1)∩LinQ(Y2) = {0}, then Y1+Y2 is

also linearly independent and LinQ(Y1)∩LinQ(Y1+Y2) = LinQ(Y1)∩LinQ(Y1+Y2) =

{0}) .

Next choose a set Z2 ⊆ Z \ Z1 such that |Z2| = |H1|, (fj − fi2)[Z2] is linearly

independent, and LinQ((fj − fi2)[Z2])∩LinQ(
⋃k

1(g+ fi)[Z1]) = {0} for all fj 6∼= fi2

(note that V ⊆
⋃k

1(g+fi)[Z1] since LinQ((g+fi1)[Z1]) = V ). This choice is possible

for similar reasons as in the case of Z1. Let g′2 : Z2 → H1 be a bijection and extend

g onto Z1 ∪ Z2 by defining it on Z2 as g = g′2 − fi2 . Then g + fj is one-to-one for

all j, (g+ fj)[Z1 ∪Z2] is linearly independent for all j, V ⊆ LinQ((g+ fj)[Z1 ∪Z2])

for fj ∼= fi1 or fj ∼= fi2 , and LinQ((g + fj)[Z1 ∪ Z2]) ∩ V = {0} for fj 6∼= fi1 and

fj 6∼= fi2 .

By continuing this process (or more formally, by using the mathematical induc-

tion), we construct a sequence of pairwise disjoint sets Z1, Z2, . . . , Zl ⊆ Z and a

partial real function g : Z ′ → R (Z ′ = Z1 ∪ · · · ∪Zl) such that for each j = 1, . . . , k,

g+fj is one-to-one, (g+fj)[Z
′] is linearly independent, and V ⊆ LinQ((g+fj)[Z

′]).

Observe also that |Z ′| ≤ κ. Therefore |X \ Z ′| = c.

In the following part of the proof, we will use the transfinite induction to extend

the partial function g onto the whole set X making sure it possesses the desired

properties. We will make use of Lemma 6 and Remark 7. First notice that if

Z ′ ⊆ A ⊆ X and g : A → R is any extension of g : Z ′ → R then for fj ≈ fi we

have that ((g + fj) − (g + fi))[A] = (fj − fi)[A] ⊆ (fj − fi)[X] ⊆ V ⊆ LinQ((g +

fi)[Z
′]) ∩ LinQ((g + fj)[Z

′]). Hence the remark implies that LinQ((g + fi)[A]) =

LinQ((g + fj)[A]). Thus, when extending the function g it will suffice to consider

only the representatives of the abstract classes of the relation ≈. Let fj1 , . . . , fjt

be those functions. Let H = {hξ : ξ < c} be a Hamel basis and {xξ : ξ < c} be an
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enumeration of X \ Z ′. We will define a sequence of pairwise disjoint finite sets

{Xξ : ξ < c} such that
⋃
ξ<cXξ = X \Z ′, xξ ∈

⋃
β≤ξXβ and an extension of g onto

X such that for each ξ < c the following condition holds

(Pξ) g + fjr is one-to-one, (g + fjr )[Z ′ ∪
⋃
β≤ξXβ ] is linearly independent, and

hξ ∈ LinQ((g + fjr )[Z ′ ∪
⋃
β≤ξXβ ]) for all r = 1, . . . , t.

Notice that this will finish the proof of our main theorem. To perform the

inductive construction, fix α < c and assume that the sets Xξ have been defined

for all ξ < α and the function g extended onto Z ′ ∪
⋃
ξ<αXξ in such a way that

(Pξ) is satisfied for each ξ < α.

If xα 6∈ Z ′ ∪
⋃
ξ<αXξ, then define g(xα) 6∈

⋃t
r=1 LinQ((g + fjr )[Z ′ ∪

⋃
ξ<αXξ] ∪

{fjr (xα)}). This assures that g+fjr is one-to-one and (g+fjr )[Z ′∪
⋃
ξ<αXξ∪{xα}]

is linearly independent (r = 1, . . . , t). Next, if hα ∈ (g+ fj1)[Z ′ ∪
⋃
ξ<αXξ ∪{xα}],

then put Xα1 = ∅. Otherwise, we apply Lemma 6 to functions fjr − fj1 : X \ (Z ′ ∪⋃
ξ<αXξ ∪ {xα}) → R (r = 2, . . . , t), B0 = LinQ((g + fj1)[Z ′ ∪

⋃
ξ<αXξ ∪ {xα}]),

B1 = LinQ(
⋃t
r=2(g + fjr )[Z ′ ∪

⋃
ξ<αXξ ∪ {xα}]), and y = hα. Hence there exist

y1j1 , . . . , yn1j1 ∈ R and x1j1 , . . . , xn1j1 ∈ X\(Z ′∪
⋃
ξ<αXξ∪{xα}) such that the con-

ditions (a) and (b) from the lemma are satisfied. We define Xα1 = {x1j1 , . . . , xn1j1}
and g(xij1) = yijr − fj1(xij1) (i = 1 . . . , n1). By repeating the above steps for the

other functions fj2 , . . . , fjt (the sets B0 and B1 need to be appropriately extended in

each step) we obtain pairwise disjoint sets Xα1, . . . , Xαt ⊆ X \(Z ′∪
⋃
ξ<αXξ∪{xα}

and an extension of g onto Z ′ ∪
⋃
ξ≤αXξ (where Xα = Xα1 ∪ · · · ∪ Xαt ∪ {xα}).

Observe that the conditions (a) and (b) from Lemma 6 imply that (Pα) holds. This

completes the inductive construction and also the proof of Theorem 1.
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