ON FUNCTIONS WHOSE GRAPH IS A HAMEL BASIS II

KRZYSZTOF PŁOTKA

Abstract

We say that a function $h: \mathbb{R} \rightarrow \mathbb{R}$ is a Hamel function $(h \in \operatorname{HF})$ if h, considered as a subset of \mathbb{R}^{2}, is a Hamel basis for \mathbb{R}^{2}. We show that $\mathrm{A}(\mathrm{HF}) \geq \omega$, i.e., for every finite $F \subseteq \mathbb{R}^{\mathbb{R}}$ there exists $f \in \mathbb{R}^{\mathbb{R}}$ such that $f+F \subseteq$ HF. From the previous work of the author it then follows that $\mathrm{A}(\mathrm{HF})=\omega($ see $[\mathrm{P}])$.

The terminology is standard and follows [C]. The symbols \mathbb{R} and \mathbb{Q} stand for the sets of all real and all rational numbers, respectively. A basis of \mathbb{R}^{n} as a linear space over \mathbb{Q} is called Hamel basis. For $Y \subset \mathbb{R}^{n}$, the symbol $\operatorname{Lin}_{\mathbb{Q}}(Y)$ stands for the smallest linear subspace of \mathbb{R}^{n} over \mathbb{Q} that contains Y. The zero element of \mathbb{R}^{n} is denoted by 0 . All the linear algebra concepts are considered for the field of rational numbers. The cardinality of a set X we denote by $|X|$. In particular, \mathfrak{c} stands for $|\mathbb{R}|$. Given a cardinal κ, we let $\operatorname{cf}(\kappa)$ denote the cofinality of κ. We say that a cardinal κ is regular if $\operatorname{cf}(\kappa)=\kappa$. For any set X, the symbol $[X]^{\kappa}$ denotes the set $\{Z \subseteq X:|Z|<\kappa\}$. For $A, B \subseteq \mathbb{R}^{n}, A+B$ stands for $\{a+b: a \in A, b \in B\}$.

We consider only real-valued functions. No distinction is made between a function and its graph. For any two partial real functions f, g we write $f+g, f-g$ for the sum and difference functions defined on $\operatorname{dom}(f) \cap \operatorname{dom}(g)$. The class of all functions from a set X into a set Y is denoted by Y^{X}. We write $f \mid A$ for the restriction of $f \in Y^{X}$ to the set $A \subseteq X$. For $B \subseteq \mathbb{R}^{n}$ its characteristic function is denoted by χ_{B}. For any function $g \in \mathbb{R}^{X}$ and any family of functions $F \subseteq \mathbb{R}^{X}$ we define $g+F=\{g+f: f \in F\}$. For any planar set P, we denote its x-projection by $\operatorname{dom}(P)$.

The cardinal function $\mathrm{A}(\mathrm{F})$, for $\mathrm{F} \varsubsetneqq \mathbb{R}^{X}$, is defined as the smallest cardinality of a family $G \subseteq \mathbb{R}^{X}$ for which there is no $g \in \mathbb{R}^{X}$ such that $g+G \subseteq \mathrm{~F}$. Recall that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a Hamel function $\left(f \in \operatorname{HF}\left(\mathbb{R}^{n}\right)\right)$ if f, considered as a subset of \mathbb{R}^{n+1}, is a Hamel basis for \mathbb{R}^{n+1}. In $[\mathrm{P}]$, it was proved that $3 \leq \mathrm{A}\left(\mathrm{HF}\left(\mathbb{R}^{n}\right)\right) \leq \omega$. In the same paper, the author asked whether $\mathrm{A}\left(\operatorname{HF}\left(\mathbb{R}^{n}\right)\right)=\omega$ (Problem 3.5). The following theorem gives a positive answer to this question.

[^0]Theorem 1. $\mathrm{A}\left(\operatorname{HF}\left(\mathbb{R}^{n}\right)\right) \geq \omega$, i.e. for every finite $F \subseteq \mathbb{R}^{\mathbb{R}^{n}}$, there exists $g \in \mathbb{R}^{\mathbb{R}^{n}}$ such that $g+F \subseteq \operatorname{HF}\left(\mathbb{R}^{n}\right)$.

Before we prove the theorem we state and prove the following lemmas.
Lemma 2. Let $b_{1}, \ldots, b_{m} \in \mathbb{R}$ be arbitrary numbers. There exists a linear basis C of $\operatorname{Lin}_{\mathbb{Q}}\left(b_{1}, \ldots, b_{m}\right)$ such that $b_{i}+C$ is also a basis of $\operatorname{Lin}_{\mathbb{Q}}\left(b_{1}, \ldots, b_{m}\right)$, for every $i \leq m$.

Proof. Without loss of generality we may assume that $\operatorname{Lin}_{\mathbb{Q}}\left(b_{1}, \ldots, b_{m}\right) \neq\{0\}$. Let $C^{\prime}=\left\{c_{1}{ }^{\prime}, \ldots, c_{k}{ }^{\prime}\right\}$ be any linear basis of $\operatorname{Lin}_{\mathbb{Q}}\left(b_{1}, \ldots, b_{n}\right)$. So, for every $i \leq m$ there are $p_{i 1}{ }^{\prime}, \ldots, p_{i k}{ }^{\prime} \in \mathbb{Q}$ such that

$$
\sum_{j} p_{i j}{ }^{\prime} c_{j}^{\prime}=b_{i}
$$

Now, choose $q \in \mathbb{Q} \backslash\{0\}$ satisfying the following condition for all i

$$
q \sum_{j} p_{i j}^{\prime} \neq-1
$$

We claim that $C=\left\{c_{1}, \ldots, c_{k}\right\}=\frac{1}{q} C^{\prime}=\left\{\frac{1}{q} c_{1}{ }^{\prime}, \ldots, \frac{1}{q} c_{k}{ }^{\prime}\right\}$ is the desired basis. To prove this we need to show that for every $i \leq m$

- $b_{i}+C$ is linearly independent.

To see this consider a zero linear combination $\sum_{j} p_{i j}\left(b_{i}+c_{j}\right)=0$. We have that $\sum_{j} p_{i j} c_{j}=-b_{i} \sum_{j} p_{i j}$. If $\sum_{j} p_{i j}=0$ then obviously $p_{i 1}=\cdots=$ $p_{i k}=0$. So we may assume that $\sum_{j} p_{i j} \neq 0$. Next we divide both sides of $\sum_{j} p_{i j} c_{j}=-b_{i} \sum_{j} p_{i j}$ by $-\sum_{j} p_{i j}$ and obtain that $\sum_{j} \frac{p_{i j}}{-\sum_{j} p_{i j}} c_{j}=b_{i}$. On the other hand $\sum_{j} p_{i j}{ }^{\prime} c_{j}{ }^{\prime}=\sum_{j} p_{i j}{ }^{\prime} q c_{j}=b_{i}$. So we conclude that $\frac{p_{i j}}{-\sum_{j} p_{i j}}=q p_{i j}{ }^{\prime}$ for all $j \leq k$ and consequently $q \sum_{j} p_{i j}{ }^{\prime}=\sum_{j} \frac{p_{i j}}{-\sum_{j} p_{i j}}=$ -1. A contradiction.

Now, since $\operatorname{dim}\left(\operatorname{Lin}_{\mathbb{Q}}\left(b_{i}+C\right)\right)=\operatorname{dim}\left(\operatorname{Lin}_{\mathbb{Q}}(C)\right)$ and $\operatorname{Lin}_{\mathbb{Q}}\left(b_{i}+C\right) \subseteq \operatorname{Lin}_{\mathbb{Q}}(C)$, we conclude that $\operatorname{Lin}_{\mathbb{Q}}\left(b_{i}+C\right)=\operatorname{Lin}_{\mathbb{Q}}(C)=\operatorname{Lin}_{\mathbb{Q}}\left(b_{1}, \ldots, b_{m}\right)$.

Let us note here that the above lemma cannot generalized onto infinite case. As a counterexample take $\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}=\mathbb{Q}$ and observe that there is no basis C with the required properties.

Lemma 3. [PR, Lemma 2] Let $H \subseteq \mathbb{R}^{n}$ be a Hamel basis. Assume that $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is such that $h \mid H \equiv 0$. Then h is a Hamel function iff $h \mid\left(\mathbb{R}^{n} \backslash H\right)$ is one-to-one and $h\left[\mathbb{R}^{n} \backslash H\right] \subseteq \mathbb{R}$ is a Hamel basis.

Lemma 4. Let X be a set of cardinality \mathfrak{c} and $k \geq 1$. TFAE:
(a) for all $f_{1}, \ldots, f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, there exists $f \in \mathbb{R}^{\mathbb{R}^{n}}$ such that $f+f_{i} \in \operatorname{HF}\left(\mathbb{R}^{n}\right)$ $(i=1, \ldots, k)$.
(b) for all $g_{1}, \ldots, g_{k} \in \mathbb{R}^{X}$, there exists $g \in \mathbb{R}^{X}$ such that $g+g_{i}$ is one-to-one and $\left(g+g_{i}\right)[X] \subseteq \mathbb{R}$ is a Hamel basis $(i=1, \ldots, k)$.

Proof. $(a) \Rightarrow(b)$ Choose a Hamel basis $H \subseteq \mathbb{R}^{n}$ and a bijection $p: \mathbb{R}^{n} \backslash H \rightarrow X$. Put $f_{i}=\left(g_{i} \circ p\right) \cup(0 \mid H)$. By (a), there exists an $f \in \mathbb{R}^{\mathbb{R}^{n}}$ such that $f+f_{i} \in \operatorname{HF}\left(\mathbb{R}^{n}\right)$ $(i=1, \ldots, k)$. Now, let $A \in \operatorname{Add}\left(\mathbb{R}^{n}\right)$ be such that $f|H=A| H$ and put $f^{\prime}=f-A$. Note that $f^{\prime}+f_{i}=\left(f+f_{i}\right)-A \in \operatorname{HF}\left(\mathbb{R}^{n}\right)-\operatorname{Add}\left(\mathbb{R}^{n}\right)=\operatorname{HF}\left(\mathbb{R}^{n}\right)$ (see $[\mathrm{P}$, Fact 3.1]) and also $\left(f^{\prime}+f_{i}\right) \mid H \equiv 0,(i=1, \ldots, k)$. Hence, by Lemma 3 we claim that $\left(f^{\prime}+f_{i}\right) \mid\left(\mathbb{R}^{n} \backslash H\right)$ is a bijection onto a Hamel basis. Now define $g=f^{\prime} \circ p^{-1}$ and note that it is the required function.
$(b) \Rightarrow(a)$ Let H be like above. Choose $A_{i} \in \operatorname{Add}\left(\mathbb{R}^{n}\right)$ such that $f_{i}\left|H \equiv A_{i}\right| H$ for every $i=1, \ldots, k$. Put $X=\mathbb{R}^{n} \backslash H$ and $g_{i}=\left(f_{i}-A_{i}\right) \mid X$ for $i=1, \ldots, k$. By (b), there exists a $g: X \rightarrow \mathbb{R}$ such that $g+g_{i}$ is a bijection between X and a Hamel basis. Define $f=g \cup(0 \mid H)$ and observe that $f+f_{i}=\left[f+\left(f_{i}-A_{i}\right)\right]+A_{i}=$ $\left[\left(g+g_{i}\right) \cup(0 \mid H)\right]+A_{i}$. Since $\left(g+g_{i}\right) \cup(0 \mid H) \in \operatorname{HF}\left(\mathbb{R}^{n}\right)$ by Lemma 3, using [P, Fact 3.1] we conclude that $\left[\left(g+g_{i}\right) \cup(0 \mid H)\right]+A_{i} \in \operatorname{HF}\left(\mathbb{R}^{n}\right)$ for each $i=1, \ldots, k$. Hence f is the required function.

Lemma 5. Let X be a set of cardinality $\mathfrak{c}, \omega \leq \kappa<\mathfrak{c}$, and $f_{1}, \ldots f_{k} \in \mathbb{R}^{X}$ be functions such that $\left|f_{i}[X]\right|=\mathfrak{c}$. Then there exist pairwise disjoint subsets $A_{1}, \ldots A_{n} \subseteq X$ of cardinality κ^{+}each and satisfying the following property: for every $i=1, \ldots, k$ and $j=1, \ldots, n$ the restriction $f_{i} \mid A_{j}$ is one-to-one or constant and $\left|f_{i}\left[\bigcup A_{j}\right]\right|=\kappa^{+}$(i.e. f_{i} is one-to-one on at least one of the sets).

Proof. We prove the lemma by induction on k. If $k=1$, then the conclusion is obvious (note that $\kappa^{+} \leq \mathfrak{c}$). Now assume that the lemma holds for $k \in \omega$ and let $f_{1}, \ldots f_{k+1} \in \mathbb{R}^{X}$ be functions such that $\left|f_{i}[X]\right|=\mathfrak{c}$. Based on the inductive assumption, let $A_{1}, \ldots A_{n} \subseteq X$ be sets with the required properties for the functions $f_{1}, \ldots f_{k}$. If $\left|f_{k+1}\left[\bigcup A_{i}\right]\right|=\kappa^{+}$, then by reducing the original sets $A_{1}, \ldots A_{n}$ we will obtain sets which work for all the functions $f_{1}, \ldots f_{k+1}$. In the case when $\left|f_{k+1}\left[\bigcup A_{i}\right]\right| \leq \kappa$, we can find a subset $A_{n+1} \subseteq X$ disjoint with $\bigcup_{1}^{n} A_{i}$ such that $\left|A_{n+1}\right|=\kappa^{+}$and $f_{k+1} \mid A_{n+1}$ is injective. Now, by appropriately reducing the sets $A_{1}, \ldots A_{n+1}$ we will obtain the desired sets.

Lemma 6. Let X be a set of cardinality \mathfrak{c}, $f_{1}, \ldots f_{k} \in \mathbb{R}^{X}$ be functions such that $\left|f_{i}[X]\right|=\mathfrak{c}, B_{0}, B_{1} \subseteq \mathbb{R}$ be such that $\left|B_{0} \cup B_{1}\right|<\mathfrak{c}$, and $y \in \mathbb{R} \backslash \operatorname{Lin}_{\mathbb{Q}}\left(B_{0}\right)$. Then there exist $y_{1}, \ldots, y_{n} \in \mathbb{R}$ and $x_{1}, \ldots, x_{n} \in X$ such that
(a) $\sum_{1}^{n} y_{j}=y$,
(b) $\left\{y_{1}, \ldots, y_{n}\right\},\left\{y_{j}+f_{i}\left(x_{j}\right): j=1, \ldots, n\right\}$ are both linearly independent over \mathbb{Q} and $\operatorname{Lin}_{\mathbb{Q}}\left(\left\{y_{1}, \ldots, y_{n}\right\}\right) \cap \operatorname{Lin}_{\mathbb{Q}}\left(B_{0}\right)=\operatorname{Lin}_{\mathbb{Q}}\left(\left\{y_{j}+f_{i}\left(x_{j}\right): j=1, \ldots, n\right\}\right) \cap$ $\operatorname{Lin}_{\mathbb{Q}}\left(B_{1}\right)=\{0\}$ for all $i=1, \ldots, k$.

Proof. Put $\kappa=\left|B_{0} \cup B_{1} \cup \omega\right|$ and let $A_{1}, \ldots A_{n} \subseteq X$ be the sets from Lemma 5 for functions $f_{1}, \ldots f_{k}$. First we will define the values y_{1}, \ldots, y_{n}. Let $\left\{b_{1}, \ldots b_{s}\right\}$ be the set of all values such that $f_{i} \mid A_{j} \equiv b_{l}$ for some i, j, l. Choose y_{2}, \ldots, y_{n} to be linearly independent over \mathbb{Q} such that $\operatorname{Lin}_{\mathbb{Q}}\left(\left\{y_{2}, \ldots, y_{n}\right\}\right) \cap \operatorname{Lin}_{\mathbb{Q}}\left(B_{0} \cup B_{1} \cup\left\{b_{1}, \ldots, b_{s}, y\right\}\right)=$ $\{0\}$. This can be easily done by extending the basis of $\operatorname{Lin}_{\mathbb{Q}}\left(B_{0} \cup B_{1} \cup\left\{b_{1}, \ldots, b_{s}, y\right\}\right)$ to a Hamel basis and selecting $(n-1)$ elements from the extension. Next define $y_{1}=y-\left(y_{2}+\cdots+y_{n}\right)$.

Obviously $\sum_{1}^{n} y_{j}=y$. We claim that $\left\{y_{1}, \ldots, y_{n}\right\}$ is linearly independent over \mathbb{Q} and $\operatorname{Lin}_{\mathbb{Q}}\left(\left\{y_{1}, \ldots, y_{n}\right\}\right) \cap \operatorname{Lin}_{\mathbb{Q}}\left(B_{0}\right)=\{0\}$. Assume that $\alpha_{1} y_{1}+\cdots+\alpha_{n} y_{n}=0$ for some rationals $\alpha_{1}, \ldots, \alpha_{n}$. From the definition of y_{1} we get $\left(\alpha_{2}-\alpha_{1}\right) y_{2}+\cdots+\left(\alpha_{n}-\right.$ $\left.\alpha_{1}\right) y_{n}=-\alpha_{1} y$. Based on the way y_{2}, \ldots, y_{n} were selected we conclude that $\alpha_{1}=0$ and consequently $\alpha_{2}=\cdots=\alpha_{n}=0$. Next assume that $q_{1} y_{1}+\cdots+q_{n} y_{n}=b$ for some rationals q_{1}, \ldots, q_{n} and $b \in \operatorname{Lin}_{\mathbb{Q}}\left(B_{0}\right)$. Then, proceeding similarly like above, we obtain that $\left(q_{2}-q_{1}\right) y_{2}+\cdots+\left(q_{n}-q_{1}\right) y_{n} \in \operatorname{Lin}_{\mathbb{Q}}\left(B_{0} \cup\{y\}\right)$, which implies that $q_{1}=\cdots=q_{n}$. Consequently, if $q_{1} \neq 0$, then we could conclude that $y \in \operatorname{Lin}_{\mathbb{Q}}\left(B_{0}\right)$. That would contradict one of the assumptions of the lemma. Hence $q_{1}=\cdots=q_{n}=0$ and the sequence y_{1}, \ldots, y_{n} satisfies the required conditions.

Before we define the sequence x_{1}, \ldots, x_{n}, we observe some additional properties of y_{1}, \ldots, y_{n}. Fix $1 \leq i \leq k$. Let $A_{i_{1}}, \ldots, A_{i_{l}}\left(i_{1}<\cdots<i_{l}\right)$ be all the sets on which f_{i} is constant and let $b_{i_{1}}, \ldots, b_{i_{l}}$ be the values of f_{i} on these sets, respectively. Note that properties of the sets A_{1}, \ldots, A_{n} imply that $\left\{i_{1}, \ldots, i_{l}\right\} \nsubseteq\{1, \ldots, n\}$. We will show that
(1) $\left(y_{i_{1}}+b_{i_{1}}\right), \ldots,\left(y_{i_{l}}+b_{i_{l}}\right)$ are linearly independent,
(2) $\operatorname{Lin}_{\mathbb{Q}}\left(\left\{\left(y_{i_{1}}+b_{i_{1}}\right), \ldots,\left(y_{i_{l}}+b_{i_{l}}\right)\right\}\right) \cap \operatorname{Lin}_{\mathbb{Q}}\left(B_{1}\right)=\{0\}$.

To see (1) assume that $\alpha_{1}\left(y_{i_{1}}+b_{i_{1}}\right)+\cdots+\alpha_{l}\left(y_{i_{l}}+b_{i_{l}}\right)=0$ for some rationals $\alpha_{1}, \ldots, \alpha_{l}$. This implies $\alpha_{1} y_{i_{1}}+\cdots+\alpha_{l} y_{i_{l}}=-\left(\alpha_{1} b_{i_{1}}+\cdots+\alpha_{l} b_{i_{l}}\right) \in \operatorname{Lin}_{\mathbb{Q}}\left(B_{0} \cup\right.$ $\left.B_{1} \cup\left\{b_{1}, \ldots, b_{s}, y\right\}\right)$. If $i_{1} \neq 1$, then it easily follows that $\alpha_{1}=\cdots=\alpha_{l}=0$. If $i_{1}=1$, then we can write $\alpha_{1} y_{i_{1}}+\cdots+\alpha_{l} y_{i_{l}}=\alpha_{1} y_{1}+\alpha_{2} y_{i_{2}}+\cdots+\alpha_{l} y_{i_{l}}=$ $\alpha_{1}\left[y-\left(y_{2}+\cdots+y_{n}\right)\right]+\alpha_{2} y_{i_{2}}+\cdots+\alpha_{l} y_{i_{l}} \in \operatorname{Lin}_{\mathbb{Q}}\left(B_{0} \cup B_{1} \cup\left\{b_{1}, \ldots, b_{s}, y\right\}\right)$.

Consequently, $-\alpha_{1}\left(y_{2}+\cdots+y_{n}\right)+\alpha_{2} y_{i_{2}}+\cdots+\alpha_{l} y_{i_{l}} \in \operatorname{Lin}_{\mathbb{Q}}\left(B_{0} \cup B_{1} \cup\left\{b_{1}, \ldots, b_{s}, y\right\}\right)$. Since $\left\{i_{1}, \ldots, i_{l}\right\} \nsubseteq\{1, \ldots, n\}$, after simplifying the expression $-\alpha_{1}\left(y_{2}+\cdots+\right.$ $\left.y_{n}\right)+\alpha_{2} y_{i_{2}}+\cdots+\alpha_{l} y_{i_{l}}$, there will be at least one term y_{j} with the coefficient being exactly $-\alpha_{1}$. Hence, we conclude that $\alpha_{1}=0$ and as a consequence of that $\alpha_{2}=\cdots=\alpha_{l}=0$. This finishes the proof of (1). Similar argument shows (2).

Next we will define the elements $x_{1}, \ldots, x_{n} \in X$ (by induction). Choose

$$
x_{1} \in A_{1} \backslash \bigcup_{i \leq k, f_{i} \text { is } 1-1 \text { on } A_{1}} f_{i}^{-1}\left[\operatorname{Lin}_{\mathbb{Q}}\left(B_{1} \cup\left\{b_{1}, b_{2}, \ldots, b_{s}, y_{1}, \ldots, y_{n}\right\}\right)\right] .
$$

This choice is possible since $\left|A_{1}\right|=\kappa^{+}>\kappa \geq\left|\operatorname{Lin}_{\mathbb{Q}}\left(B_{1} \cup\left\{b_{1}, b_{2}, \ldots, b_{s}, y_{1}, \ldots, y_{n}\right\}\right)\right|$ and together with the condition (2) assures that $\operatorname{Lin}_{\mathbb{Q}}\left(\left\{y_{1}+f_{i}\left(x_{1}\right): f_{i} \mid A_{1}\right.\right.$ is 1-1 $\left.\}\right) \cap$ $\operatorname{Lin}_{\mathbb{Q}}\left(B_{1} \cup\left\{b_{1}, b_{2}, \ldots, b_{s}, y_{1}, \ldots, y_{n}\right\}\right) \subseteq\{0\}$ and $\operatorname{Lin}_{\mathbb{Q}}\left(\left\{y_{1}+f_{i}\left(x_{1}\right)\right\}\right) \cap \operatorname{Lin}_{\mathbb{Q}}\left(B_{1}\right)=$ $\{0\}$ for all $i \leq k$.
Now assume that $x_{1} \in A_{1}, \ldots, x_{m-1} \in A_{m-1}(m<n)$ have been defined and they satisfy the following property: $(\star)\left\{y_{j}+f_{i}\left(x_{j}\right): j=1, \ldots, m-1\right\}$ is linearly independent, $\operatorname{Lin}_{\mathbb{Q}}\left(\left\{y_{j}+f_{i}\left(x_{j}\right): j \leq m-1\right.\right.$ and $f_{i} \mid A_{j}$ is $\left.\left.1-1\right\}\right) \cap \operatorname{Lin}_{\mathbb{Q}}\left(B_{1} \cup\right.$ $\left.\left\{b_{1}, b_{2}, \ldots, b_{s}, y_{1}, \ldots, y_{n}\right\}\right) \subseteq\{0\}$, and $\operatorname{Lin}_{\mathbb{Q}}\left(\left\{y_{j}+f_{i}\left(x_{j}\right): j=1, \ldots, m-1\right\}\right) \cap$ $\operatorname{Lin}_{\mathbb{Q}}\left(B_{1}\right)=\{0\}$ for all $i=1, \ldots, k$. Choose $x_{m} \in A_{m}$ such that

$$
x_{m} \notin \underset{i \leq k, f_{i} \text { is } 1-1 \text { on } A_{m}}{\bigcup_{i}^{-1}\left[\operatorname{Lin}_{\mathbb{Q}}\left(B_{1} \cup\left\{b_{1}, b_{2}, \ldots, b_{s}, y_{1}, \ldots, y_{n}, f_{i}\left(x_{1}\right), \ldots, f_{i}\left(x_{m-1}\right)\right\}\right)\right] .}
$$

The choice of x_{m} implies that

$$
y_{m}+f_{i}\left(x_{m}\right) \notin \operatorname{Lin}_{\mathbb{Q}}\left(B_{1} \cup\left\{b_{1}, b_{2}, \ldots, b_{s}, y_{1}, \ldots, y_{n}, f_{i}\left(x_{1}\right), \ldots, f_{i}\left(x_{m-1}\right)\right\}\right)
$$

for all $i \leq k$ such that f_{i} is 1-1 on A_{m}. This combined with the inductive assumption (\star) and the conditions (1) and (2) leads to the conclusion that $\left\{y_{j}+f_{i}\left(x_{j}\right): j=\right.$ $1, \ldots, m\}$ is linearly independent, $\operatorname{Lin}_{\mathbb{Q}}\left(\left\{y_{j}+f_{i}\left(x_{j}\right): j \leq m\right.\right.$ and $f_{i} \mid A_{j}$ is $\left.\left.1-1\right\}\right) \cap$ $\operatorname{Lin}_{\mathbb{Q}}\left(B_{1} \cup\left\{b_{1}, b_{2}, \ldots, b_{s}, y_{1}, \ldots, y_{n}\right\}\right) \subseteq\{0\}$, and $\operatorname{Lin}_{\mathbb{Q}}\left(\left\{y_{j}+f_{i}\left(x_{j}\right): j=1, \ldots, m\right\}\right) \cap$ $\operatorname{Lin}_{\mathbb{Q}}\left(B_{1}\right)=\{0\}$ for all $i=1, \ldots, k$. Based on the induction we claim that the sequence $x_{1}, \ldots, x_{n} \in X$ has been constructed and it satisfies the following condition: $\left\{y_{j}+f_{i}\left(x_{j}\right): j=1, \ldots, n\right\}$ is linearly independent and $\operatorname{Lin}_{\mathbb{Q}}\left(\left\{y_{j}+f_{i}\left(x_{j}\right): j=\right.\right.$ $1, \ldots, n\}) \cap \operatorname{Lin}_{\mathbb{Q}}\left(B_{1}\right)=\{0\}$ for all $i=1, \ldots, k$.

Summarizing, the sequences $x_{1}, \ldots, x_{n} \in X$ and $y_{1}, \ldots, y_{n} \in \mathbb{R}$ satisfying the conditions (a) and (b) have been constructed.

Remark 7. Let $A^{\prime} \subseteq A$ and $f_{1}, f_{2}: A \rightarrow \mathbb{R}$. If $\left(f_{1}-f_{2}\right)[A] \subseteq \operatorname{Lin}_{\mathbb{Q}}\left(f_{1}\left[A^{\prime}\right]\right) \cap$ $\operatorname{Lin}_{\mathbb{Q}}\left(f_{2}\left[A^{\prime}\right]\right)$, then $\operatorname{Lin}_{\mathbb{Q}}\left(f_{1}[A]\right)=\operatorname{Lin}_{\mathbb{Q}}\left(f_{2}[A]\right)$.

The remark easily follows from the equality

$$
\sum_{1}^{l} \alpha_{i} f_{1}\left(x_{i}\right)=\sum_{1}^{l} \alpha_{i} f_{2}\left(x_{i}\right)+\sum_{1}^{l} \alpha_{i}\left[f_{1}\left(x_{i}\right)-f_{2}\left(x_{i}\right)\right]
$$

Proof of Theorem 1. Let X be a set of cardinality \mathfrak{c}. By Lemma 4, it suffices to show that for arbitrary $f_{1}, \ldots, f_{k}: X \rightarrow \mathbb{R}$ there exists a function $g: X \rightarrow \mathbb{R}$ such that $g+f_{i}$ is 1-1 and $\left(g+f_{i}\right)[X]$ is a Hamel basis $(i=1, \ldots, k)$. The proof in the general case will be by transfinite induction with the use of the previously stated auxiliary results. However, in the special case when $\left|f_{i}[X]\right|<\mathfrak{c}$ for all i, it can be presented without the use of induction. The method is interesting and also used in part of the proof of general case, so we present it here. Assume that $\left|f_{i}[X]\right|<\mathfrak{c}$ for all i, let $V=\operatorname{Lin}_{\mathbb{Q}}\left(\bigcup f_{i}[X]\right)$, and $\lambda<\mathfrak{c}$ be the cardinality of a linear basis of V. Choose $Z \subseteq X$ such that $|Z|=\lambda$ and $f_{i} \mid Z$ is a constant function for every i and let $\left\{b_{1}, \ldots, b_{m}\right\}=\bigcup f_{i}[Z]$. Next we define a Hamel basis H. Let C be a basis of $\operatorname{Lin}_{\mathbb{Q}}\left(b_{1}, \ldots, b_{m}\right)$ from Lemma $2, H_{1}$ be an extension of C to a basis of V, and finally H be an extension of H_{1} to a Hamel basis. Define $g: X \rightarrow H$ as a bijection with the property that $g[Z]=H_{1}$. We claim that $g+f_{i}$ is $1-1$ and $\left(g+f_{i}\right)[X]$ is a Hamel basis $(i=1, \ldots, k)$. To see this recall that $b_{j}+C$ is linearly independent, $\operatorname{Lin}_{\mathbb{Q}}\left(b_{j}+C\right)=\operatorname{Lin}_{\mathbb{Q}}(C)=\operatorname{Lin}_{\mathbb{Q}}\left(\left\{b_{1}, \ldots, b_{m}\right\}\right)$ (see Lemma 2), and $C \subseteq H_{1}$. This implies that $\operatorname{Lin}_{\mathbb{Q}}\left(b_{j}+H_{1}\right)=\operatorname{Lin}_{\mathbb{Q}}\left(H_{1}\right), b_{j}+\left(H_{1} \backslash C\right)$ is linearly independent, and as a consequence, $b_{j}+H_{1}$ is linearly independent. Therefore, since $f_{i}[Z]=\left\{b_{j}\right\}$ for some j, we have that $\left(g+f_{i}\right)[Z]=b_{j}+H_{1}$. Thus $\left(g+f_{i}\right)[Z]$ is linearly independent and $\operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{i}\right)[Z]\right)=\operatorname{Lin}_{\mathbb{Q}}\left(H_{1}\right)$. Finally, since $f_{i}[X] \subseteq \operatorname{Lin}_{\mathbb{Q}}\left(H_{1}\right)=\operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{i}\right)[Z]\right)$, we can similarly conclude that $\left(g+f_{i}\right)[X]$ is linearly independent and $\operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{i}\right)[X]\right)=\operatorname{Lin}_{\mathbb{Q}}(g[X])=\operatorname{Lin}_{\mathbb{Q}}(g[X])=\mathbb{R}$. This finishes the proof of the special case.

Now we prove the result for arbitrary functions $f_{1}, \ldots, f_{k}: X \rightarrow \mathbb{R}$. We start by dividing $\left\{f_{1}, \ldots, f_{k}\right\}$ into abstract classes according to the relation: $f_{i} \approx f_{j}$ iff $\left|\left(f_{i}-f_{j}\right)[X]\right|<\mathfrak{c}$ (it is easy to verify that this is an equivalence relation). Put $K=\bigcup_{i} \bigcup_{f_{j} \approx f_{i}}\left(f_{i}-f_{j}\right)[X], \kappa=|\omega \cup K|$, and note that $\kappa<\mathfrak{c}$. There exists a set $Z \subseteq X$ such that $|Z|=\kappa^{+}$and for all i, j the function $\left(f_{i}-f_{j}\right) \mid Z$ is one-to-one or constant (the existence of such a set can be shown by using an argument similar to the one from the proof of Lemma 5; obviously, if $f_{i} \approx f_{j}$, then $\left(f_{i}-f_{j}\right) \mid Z$ is constant). Our goal is to define $g: Z^{\prime} \rightarrow \mathbb{R}$ for some $Z^{\prime} \subseteq Z$ such that for every $i \leq k$ $g+f_{i}$ is injective, $\left(g+f_{i}\right)\left[Z^{\prime}\right]$ is linearly independent, and $K \subseteq \operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{i}\right)\left[Z^{\prime}\right]\right)$.

Define $V=\operatorname{Lin}_{\mathbb{Q}}(K)$ and introduce another equivalence relation among the functions $f_{1}, \ldots, f_{k}: f_{i} \cong f_{j}$ iff $\left(f_{i}-f_{j}\right) \mid Z$ is constant. Note that $\approx \subseteq \cong$. Let
$f_{i_{1}}, \ldots, f_{i_{l}}$ be representatives of the abstract classes of the relation \cong. Consider $\bigcup_{s=1}^{l} \bigcup_{f_{j} \cong f_{i_{s}}}\left(f_{j}-f_{i_{s}}\right)[Z]=\left\{b_{1}, \ldots, b_{m}\right\}$. By Lemma 2, there exists a linear basis C of $\operatorname{Lin}_{\mathbb{Q}}\left(\left\{b_{1}, \ldots, b_{m}\right\}\right)$ such that $b_{r}+C(r \leq m)$ is also a linear basis for $\operatorname{Lin}_{\mathbb{Q}}\left(\left\{b_{1}, \ldots, b_{m}\right\}\right)$. Let H_{1} be a linear basis of V extending C. Choose a set $Z_{1} \subseteq Z$ such that $\left|Z_{1}\right|=\left|H_{1}\right|$ and $\left(f_{j}-f_{i_{1}}\right)\left[Z_{1}\right]$ is linearly independent and $\operatorname{Lin}_{\mathbb{Q}}\left(\left(f_{j}-f_{i_{1}}\right)\left[Z_{1}\right]\right) \cap V=\{0\}$ for all $f_{j} \neq f_{i_{1}}$. This can be done since $|Z|=\kappa^{+}>|V| \geq\left|H_{1}\right|$ and $\left(f_{j}-f_{i_{1}}\right) \mid Z$ is injective for every $f_{j} \not \not f_{i_{1}}$. Let $g_{1}^{\prime}: Z_{1} \rightarrow H_{1}$ be a bijection and define $g: Z_{1} \rightarrow \mathbb{R}$ by $g=g_{1}^{\prime}-f_{i_{1}}$. Then $g+f_{j}$ is one-to-one for all $j,\left(g+f_{j}\right)\left[Z_{1}\right]$ is linearly independent for all $j, \operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{j}\right)\left[Z_{1}\right]\right)=V$ for $f_{j} \cong f_{i_{1}}$ (see the argument in the special case in the beginning of the proof), and $\operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{j}\right)\left[Z_{1}\right]\right) \cap V=\{0\}$ for $f_{j} \neq f_{i_{1}}$ (the latter follows from the fact that if Y_{1} and Y_{2} are both linearly independent and $\operatorname{Lin}_{\mathbb{Q}}\left(Y_{1}\right) \cap \operatorname{Lin}_{\mathbb{Q}}\left(Y_{2}\right)=\{0\}$, then $Y_{1}+Y_{2}$ is also linearly independent and $\operatorname{Lin}_{\mathbb{Q}}\left(Y_{1}\right) \cap \operatorname{Lin}_{\mathbb{Q}}\left(Y_{1}+Y_{2}\right)=\operatorname{Lin}_{\mathbb{Q}}\left(Y_{1}\right) \cap \operatorname{Lin}_{\mathbb{Q}}\left(Y_{1}+Y_{2}\right)=$ $\{0\}$).

Next choose a set $Z_{2} \subseteq Z \backslash Z_{1}$ such that $\left|Z_{2}\right|=\left|H_{1}\right|,\left(f_{j}-f_{i_{2}}\right)\left[Z_{2}\right]$ is linearly independent, and $\operatorname{Lin}_{\mathbb{Q}}\left(\left(f_{j}-f_{i_{2}}\right)\left[Z_{2}\right]\right) \cap \operatorname{Lin}_{\mathbb{Q}}\left(\bigcup_{1}^{k}\left(g+f_{i}\right)\left[Z_{1}\right]\right)=\{0\}$ for all $f_{j} \neq f_{i_{2}}$ (note that $V \subseteq \bigcup_{1}^{k}\left(g+f_{i}\right)\left[Z_{1}\right]$ since $\left.\operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{i_{1}}\right)\left[Z_{1}\right]\right)=V\right)$. This choice is possible for similar reasons as in the case of Z_{1}. Let $g_{2}^{\prime}: Z_{2} \rightarrow H_{1}$ be a bijection and extend g onto $Z_{1} \cup Z_{2}$ by defining it on Z_{2} as $g=g_{2}^{\prime}-f_{i_{2}}$. Then $g+f_{j}$ is one-to-one for all $j,\left(g+f_{j}\right)\left[Z_{1} \cup Z_{2}\right]$ is linearly independent for all $j, V \subseteq \operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{j}\right)\left[Z_{1} \cup Z_{2}\right]\right)$ for $f_{j} \cong f_{i_{1}}$ or $f_{j} \cong f_{i_{2}}$, and $\operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{j}\right)\left[Z_{1} \cup Z_{2}\right]\right) \cap V=\{0\}$ for $f_{j} \not \approx f_{i_{1}}$ and $f_{j} \neq f_{i_{2}}$.

By continuing this process (or more formally, by using the mathematical induction), we construct a sequence of pairwise disjoint sets $Z_{1}, Z_{2}, \ldots, Z_{l} \subseteq Z$ and a partial real function $g: Z^{\prime} \rightarrow \mathbb{R}\left(Z^{\prime}=Z_{1} \cup \cdots \cup Z_{l}\right)$ such that for each $j=1, \ldots, k$, $g+f_{j}$ is one-to-one, $\left(g+f_{j}\right)\left[Z^{\prime}\right]$ is linearly independent, and $V \subseteq \operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{j}\right)\left[Z^{\prime}\right]\right)$. Observe also that $\left|Z^{\prime}\right| \leq \kappa$. Therefore $\left|X \backslash Z^{\prime}\right|=\mathfrak{c}$.

In the following part of the proof, we will use the transfinite induction to extend the partial function g onto the whole set X making sure it possesses the desired properties. We will make use of Lemma 6 and Remark 7. First notice that if $Z^{\prime} \subseteq A \subseteq X$ and $g: A \rightarrow \mathbb{R}$ is any extension of $g: Z^{\prime} \rightarrow \mathbb{R}$ then for $f_{j} \approx f_{i}$ we have that $\left(\left(g+f_{j}\right)-\left(g+f_{i}\right)\right)[A]=\left(f_{j}-f_{i}\right)[A] \subseteq\left(f_{j}-f_{i}\right)[X] \subseteq V \subseteq \operatorname{Lin}_{\mathbb{Q}}((g+$ $\left.\left.f_{i}\right)\left[Z^{\prime}\right]\right) \cap \operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{j}\right)\left[Z^{\prime}\right]\right)$. Hence the remark implies that $\operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{i}\right)[A]\right)=$ $\operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{j}\right)[A]\right)$. Thus, when extending the function g it will suffice to consider only the representatives of the abstract classes of the relation \approx. Let $f_{j_{1}}, \ldots, f_{j_{t}}$ be those functions. Let $H=\left\{h_{\xi}: \xi<\mathfrak{c}\right\}$ be a Hamel basis and $\left\{x_{\xi}: \xi<\mathfrak{c}\right\}$ be an
enumeration of $X \backslash Z^{\prime}$. We will define a sequence of pairwise disjoint finite sets $\left\{X_{\xi}: \xi<\mathfrak{c}\right\}$ such that $\bigcup_{\xi<\mathfrak{c}} X_{\xi}=X \backslash Z^{\prime}, x_{\xi} \in \bigcup_{\beta \leq \xi} X_{\beta}$ and an extension of g onto X such that for each $\xi<\mathfrak{c}$ the following condition holds
$\left(P_{\xi}\right) g+f_{j_{r}}$ is one-to-one, $\left(g+f_{j_{r}}\right)\left[Z^{\prime} \cup \bigcup_{\beta \leq \xi} X_{\beta}\right]$ is linearly independent, and $h_{\xi} \in \operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{j_{r}}\right)\left[Z^{\prime} \cup \bigcup_{\beta \leq \xi} X_{\beta}\right]\right)$ for all $r=1, \ldots, t$.

Notice that this will finish the proof of our main theorem. To perform the inductive construction, fix $\alpha<\mathfrak{c}$ and assume that the sets X_{ξ} have been defined for all $\xi<\alpha$ and the function g extended onto $Z^{\prime} \cup \bigcup_{\xi<\alpha} X_{\xi}$ in such a way that $\left(P_{\xi}\right)$ is satisfied for each $\xi<\alpha$.

If $x_{\alpha} \notin Z^{\prime} \cup \bigcup_{\xi<\alpha} X_{\xi}$, then define $g\left(x_{\alpha}\right) \notin \bigcup_{r=1}^{t} \operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{j_{r}}\right)\left[Z^{\prime} \cup \bigcup_{\xi<\alpha} X_{\xi}\right] \cup\right.$ $\left.\left\{f_{j_{r}}\left(x_{\alpha}\right)\right\}\right)$. This assures that $g+f_{j_{r}}$ is one-to-one and $\left(g+f_{j_{r}}\right)\left[Z^{\prime} \cup \bigcup_{\xi<\alpha} X_{\xi} \cup\left\{x_{\alpha}\right\}\right]$ is linearly independent $(r=1, \ldots, t)$. Next, if $h_{\alpha} \in\left(g+f_{j_{1}}\right)\left[Z^{\prime} \cup \bigcup_{\xi<\alpha} X_{\xi} \cup\left\{x_{\alpha}\right\}\right]$, then put $X_{\alpha 1}=\emptyset$. Otherwise, we apply Lemma 6 to functions $f_{j_{r}}-f_{j_{1}}: X \backslash\left(Z^{\prime} \cup\right.$ $\left.\bigcup_{\xi<\alpha} X_{\xi} \cup\left\{x_{\alpha}\right\}\right) \rightarrow \mathbb{R}(r=2, \ldots, t), B_{0}=\operatorname{Lin}_{\mathbb{Q}}\left(\left(g+f_{j_{1}}\right)\left[Z^{\prime} \cup \bigcup_{\xi<\alpha} X_{\xi} \cup\left\{x_{\alpha}\right\}\right]\right)$, $B_{1}=\operatorname{Lin}_{\mathbb{Q}}\left(\bigcup_{r=2}^{t}\left(g+f_{j_{r}}\right)\left[Z^{\prime} \cup \bigcup_{\xi<\alpha} X_{\xi} \cup\left\{x_{\alpha}\right\}\right]\right)$, and $y=h_{\alpha}$. Hence there exist $y_{1 j_{1}}, \ldots, y_{n_{1} j_{1}} \in \mathbb{R}$ and $x_{1 j_{1}}, \ldots, x_{n_{1} j_{1}} \in X \backslash\left(Z^{\prime} \cup \bigcup_{\xi<\alpha} X_{\xi} \cup\left\{x_{\alpha}\right\}\right)$ such that the conditions (a) and (b) from the lemma are satisfied. We define $X_{\alpha 1}=\left\{x_{1 j_{1}}, \ldots, x_{n_{1} j_{1}}\right\}$ and $g\left(x_{i j_{1}}\right)=y_{i j_{r}}-f_{j_{1}}\left(x_{i j_{1}}\right)\left(i=1 \ldots, n_{1}\right)$. By repeating the above steps for the other functions $f_{j_{2}}, \ldots, f_{j_{t}}$ (the sets B_{0} and B_{1} need to be appropriately extended in each step) we obtain pairwise disjoint sets $X_{\alpha 1}, \ldots, X_{\alpha t} \subseteq X \backslash\left(Z^{\prime} \cup \bigcup_{\xi<\alpha} X_{\xi} \cup\left\{x_{\alpha}\right\}\right.$ and an extension of g onto $Z^{\prime} \cup \bigcup_{\xi \leq \alpha} X_{\xi}$ (where $X_{\alpha}=X_{\alpha 1} \cup \cdots \cup X_{\alpha t} \cup\left\{x_{\alpha}\right\}$). Observe that the conditions (a) and (b) from Lemma 6 imply that $\left(P_{\alpha}\right)$ holds. This completes the inductive construction and also the proof of Theorem 1.

References

[CA] A.L Cauchy, Cours d'analyse de l'Ecole Polytechnique, 1. Analyse algébrique, V., Paris, 1821 [Oeuvres (2) 3, Paris, 1897].
[C] K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Student Texts 39, Cambridge Univ. Press 1997.
[CM] K. Ciesielski, A.W. Miller Cardinal invariants concerning functions whose sum is almost continuous, Real Anal. Exchange 20 (1994-95), 657-672.
[CN] K. Ciesielski, T. Natkaniec, Algebraic properties of the class of Sierpiński-Zygmund functions, Topology Appl. 79 (1997), 75-99.
[CR] K. Ciesielski, I. Recław, Cardinal invariants concerning extendable and peripherally continuous functions, Real Anal. Exchange 21 (1995-96), 459-472.
[H] G. Hamel, Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung $f(x+y)=f(x)+f(y)$, Math. Ann. 60 (1905), 459-462.
[HW] W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, 1948.
[MK] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Publishers, PWN, Warszawa, 1985.
[P] K. Płotka, On functions whose graph is a Hamel basis, Proc. Amer. Math. Soc. 131 (2003), 1031-1041.
[PR] K. Płotka, I. Recław, Finitely Continuous Hamel Functions, Real Anal. Exchange, 30(2) (2004-05), 1-4.

Department of Mathematics, University of Scranton, Scranton, PA 18510, USA
E-mail address: Krzysztof.Plotka@scranton.edu

[^0]: 2000 Mathematics Subject Classification. Primary 26A21, 54C40; Secondary 15A03, 54C30.
 Key words and phrases. Hamel basis, additive and Hamel functions.
 The work was supported in part by the intersession research grant from the University of Scranton.

