The Effects of Intramuscular FES on Objective Gait Measures in Adult Patients with Chronic Stroke: A Systematic Review

Matthew L. Wells, SPT Aaron Oquendo, SPT Levi Haldeman, SPT Lisa Jackowitz, SPT Renée Hakim PT, PhD, Board-Certified Clinical Specialist in Neurologic Physical Therapy

2

Overview

- Purpose
- Introduction
- Definitions
- Materials and Methods
- Search Terms
- Selection Criteria
- PRISMA

- PEDro Scale
- Results
- Conclusion
- Clinical Relevance
- Limitations
- Future Research
- Acknowledgements

Purpose

• To determine the effectiveness of intramuscular functional electrical stimulation (IM-FES) for improving gait in adult patients with chronic cerebrovascular accident (CVA)

Introduction¹

- Stroke can cause persistent weakness and hemiplegia with impaired coordination leading to an increased fall risk and gait deviations
- FES is the application of electrical current to excite contractile tissue to supplement or replace lost function
 - Transcutaneous FES
 - Intramuscular FES

IM-FES Defined²

- The implantable nerve stimulator consists of:
 - External transmitter with a built-in antenna
 - Foot switch
 - Stimulator
 - Leads
 - Bipolar intraneural electrodes

5

IM-FES Defined²⁻³

- A footswitch placed under the heel of the patient's foot inside the shoe activates and deactivates the stimulation.
- The implantable nerve stimulator receives information carried by radiofrequency signals and converts them into the stimulation pulses of the desired amplitude and frequency.

IM-FES Parameters & Muscles^{2,4-6}

- IM-FES Parameters (within comfort):
 - Amplitude: 4 20 mA
 - Pulse width: 1 150 μs
 - Frequency: 15 50 Hz
- Muscles:
 - Tibialis anterior
 - Peroneus longus & brevis
 - Gastrocnemius, lateral head
 - Biceps femoris

- Semimembranosus
- \circ Semitendinosus
- Vastus lateralis
- Gluteus medius

- Nerves:
 - Superficial and Deep Peroneal

Methods

Materials and Methods

- The conducted literature search included:
 - CINAHL
 - \circ PubMed
 - ProQuest Nursing and Allied Health
 - SAGE Journals
 - Cochrane Library
- Two reviewers independently assessed each study
 PEDro Scale

Search Terms

- (implant* FES OR neuroprosthetic OR neuroprosthesis OR implant* stimulator) AND (lower leg OR lower extremity OR ankle) AND (gait OR ambulat* OR walk*) NOT microprocessor
- Search limits:
 - Human subjects
 - Peer-reviewed
 - English language

Selection Criteria

- Randomized controlled trials (RCTs)
- Implantable FES
- Objective gait outcome measures
- Adults (≥ 18 years old)
- Chronic CVA (>6 months)

PEDro Scale

Author	1	2	3	4	5	6	7	8	9	10	Total
Kottink et al. (2012)²	Y	Y	Y	N	N	N	N	N	Y	Y	5/10
Daly et. al. (2004) ⁶	Y	N	Y	N	N	Y	N	Y	Y	Y	6/10
Daly et. al. (2006) ⁵	Y	Y	Y	N	N	Y	N	N	Y	Y	6/10
Daly et al. (2011) ⁴	Y	Y	Y	N	N	Y	Y	N	Y	Y	7/10

- All studies examined the effects of IM-FES to improve gait for adults with chronic CVA^{2,4-6}
 124 subjects
- Body-weight supported treadmill training (BWSTT) and gait training were used for the control and intervention groups in 3 studies⁴⁻⁶
 - \circ 1.5 hours
 - \circ 4x per week
 - 12 weeks

• 1 study compared IM-FES to conventional walking devices²

- Adverse effects of IM-FES included discomfort & erythema⁴⁻⁵
 No infections were reported
- Outcomes were assessed pre- and post-treatment^{2,4-6}
 6 month follow-ups were used for 2 studies^{4,6}

• All IM-FES groups had statistically significant improvements in gait outcomes compared to controls^{2,4-6}

• Temporal distance

- Gait Assessment and Intervention Tool (G.A.I.T.)⁴
- Tinetti Gait (TG)⁵
- Observational Gait Analysis (OGA)^{2,4-6}

• Kinematics²

- Reduced stance on paretic side
- Reduced double support on paretic side
- Longer first single support on non-paretic side
- Timing/range of dorsiflexion (DF) during swing

- Greater gains in self-reported functional mobility⁵
- Retention of coordinated gait components occurred 6 months post-treatment and after IM-FES removal⁴
 Controls worsened significantly at follow-up⁴

Conclusion

Conclusion

- There is moderate evidence to support IM-FES for improving gait in patients with chronic CVA vs BWSTT or gait training alone⁴⁻⁶
- IM-FES resulted in normalized initial loading response in comparison to a conventional walking device²
- One study showed retention in gait kinematics 6 months posttreatment following removal of IM-FES⁴

Clinical Relevance

- Clinicians should consider using IM-FES to promote greater retention of gait improvements vs. gait training alone in adults with chronic CVA
- IM-FES is a safe and feasible intervention which may enhance carry-over and reduce falls

Limitations

- Several articles were published by the same authors
- Small sample size
- Inability to blind
- Invasive surgery
- Adverse effects
- Co-intervention
- Varied outcome measures and protocols
- Inability to generalize to other populations

Future Research

- Future research should:
 - Compare IM-FES to transcutaneous FES with gait training
 - Include larger sample sizes
 - Include other populations

Acknowledgements

- Dr. Renée Hakim PT, PhD, Board-Certified Clinical Specialist in Neurologic Physical Therapy
- Dr. Tracey L. Collins, PT, PhD, MBA, Board-Certified Clinical Specialist in Geriatric Physical Therapy
- Dr. John Sanko, PT, PhD, EdD
- Kelly Banyas, Research & Instruction Librarian
- The University of Scranton DPT faculty, staff, & students

References

- 1. Burridge JH, Haugland M, Larsen B, et al. Phase II trial to evaluate the ActiGait implanted drop-foot stimulator in established hemiplegia. *J Rehabil Med.* 2007;39(3):212-218.
- 2. Kottink AI, Tenniglo MJ, de Vries WH, et al. Effects of an implantable two-channel peroneal nerve stimulator versus conventional walking device on spatiotemporal parameters and kinematics of hemiparetic gait. *J Rehabil Med.* 2012;44(1):51-57.
- 3. Kottink AI, Hermens HJ, Nene AV, et al. A randomized controlled trial of an implantable 2channel peroneal nerve stimulator on walking speed and activity in poststroke hemiplegia. *Arch Phys Med Rehabil.* 2007; 88(8): 971–978.
- 4. Daly JJ, Zimbelman J, Roenigk KL, et al. Recovery of coordinated gait: Randomized controlled stroke trial of functional electrical stimulation (FES) versus no FES, with weight-supported treadmill and over-ground training. *Neurorehabil Neural Repair*. 2011;25(7):588-596.
- 5. Daly JJ, Roenigk K, Holcomb J, et al. A randomized controlled trial of functional neuromuscular stimulation in chronic stroke subjects. *Stroke*. 2006;37(1):172-178.
 6. Daly JJ, Roenigk KL, Butler KM, et al. Response of sagittal plane gait kinematics to weightsupported treadmill training and functional neuromuscular stimulation following stroke. *J Rehabil Res Dev*. 2004;41(6A):807-820.

Comments

or Questions?